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Simulation-based (2×2×2 crossover)

No futility criteria, unlimited stage 2 sample size

Futility criteria on CI, Nmax 42 (low CV ), 180 (high CV )
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Reference Type Method GMR Power (%) CV (%) αadj TIEmax

Potvin et al. [3]
1 B

0.95
80 10 – 100

0.0294
0.0489*

2 C 0.0512*

Montague et al. [4] 2 D 0.90 0.0280 0.0517*

Fuglsang [5]

1 B
0.95

90 10 – 80

0.0284 0.0497*

2 C/D 0.0274 0.0501*

2 C/D 0.90 0.0269 0.0503*

Reference Type Method GMR Power (%) CV (%) Futility region αadj1 αadj2 TIEmax

Xu et al. [11]

1 E

0.95 80

10 – 30
0.9374 – 1.0667 0.0249 0.0363 0.0490

2 F 0.9492 – 1.0535 0.0248 0.0364 0.0496

1 E
30 – 55

0.9305 – 1.0747 0.0254 0.0357 0.0453

2 F 0.9350 – 1.0695 0.0259 0.0349 0.0455
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Operating Characteristics (Type 1 TSD [3])

GMR 0.95, power 80%, αadj 0.0294 (Potvin et al. ‘Method B’)
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Type I Error Power

0.02914 – 0.04893
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Exact (2×2×2 crossover)

Repeated Confidence Intervals / Inverse Normal Method [15–18]
adapted for BE [19–21]; aka »Maurer’s method« [21]
• Controls the Type I Error in the strict sense

― Analytically proven

― Confirmed in simulations
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• Two approaches

― Standard Combination Method

― Maximum Combination Test (recommended [20,21])

• Weights of the stages have to be pre-specified

― The adjusted α depends on the weights

– The more weights differ, the more adjustment

– Robust against misspecification

– The same adjusted α is used in both stages 

― Simulations can be performed to find suitable weights
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»Maurer’s method« [21]
• My recommendations

― Stage 1 sample size

– 80% of fixed sample design for assumed GMR and CV

» Reasonably high probability to stop already in stage 1 for BE

» Overall power higher than fixed sample design

― If CV expected to be not more than 75% larger than assumed

– Standard Combination Method more powerful, requires less adjustment [22]
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• Sample size re-estimation

― A fixed GMR is used by default

― Can be fully adaptive, i.e., based on the GMR of stage 1

• Minimum and maximum stage 2 sample sizes can be pre-specified

― At least four subjects in two sequences are required in stage 2

― Too small stage 2 negatively affects power

Exact (2×2×2 crossover)
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Exact (2×2×2 crossover)

»Maurer’s method« [21]

• Optional futility criteria for stopping in the interim

― GMR outside specified limits

(default 0.80 – 1.25)

― 90% confidence interval of the GMR entirely outside specified limits

(default 0.95 – 0.95–1)

― Maximum total sample size (default 4×n1)
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• Futility criteria

― Combinations are possible

― Reduce the Type I Error

― Negatively affect power

– Fairly robust on GMR or CI

– Very sensitive on Nmax

― Simulations highly recommended
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Operating Characteristics (Exact [21])
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Fixed GMR 0.95 (CV 0.1–0.8, n1 12–72)

No futility

Type I Error 0.02598 – 0.04995

Adaptive GMR (CV 0.1–0.8, n1 12–72)

Futility on CI (outside 0.95 – 0.95–1)

Type I Error 0.01678 – 0.04523

Adaptive GMR (CV 0.1–0.8, n1 12–72)

Futility on CI (outside 0.95 – 0.95–1)

Futility on Nmax (> 4×n1)

Type I Error 0.00006 – 0.03838
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Exact (2×2×2 crossover)

»Maurer’s method« [21]
• Contrary to simulation-based methods, data are not pooled

― Stages are evaluated separately and assessed by
(repeated) confidence intervals

– ANOVA (EMA and most other juridictions)

– Mixed-effects model (FDA, Health Canada, China’s CDE)

– Additional factors, e.g., for multi-group or multi-site studies can be
incorporated in the model
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― Required in the interim analysis by Power2Stage [35]

– GMR1, CV1, n1, assumed GMR for sample size re-estimation, target power

– If additional factors in the model: df1, SEM1

― Required in the final analysis by Power2Stage [35]

– GMR1, CV1, n1

– GMR2, CV2, n2

– If additional factors in the model: df1, SEM1, df2, SEM2
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Simulation-based (parallel design [14])

Two methods implemented in Power2Stage [35]
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• ANOVA

― Incorporates a term for stage in the final analysis

– In line with the EMA’s Q&A-document [28]

― Assumes equal variances

– Liberal and hence, not recommended

• Welch-Satterthwaite test

― Approximates degrees of freedom for unequal group sizes and variances

– No stage term possible; contradicts the EMA’s Q&A-document [28]

– In line with the FDA’s guidance [33]

– Highly recommended

• Modifications (simulations recommended)

― Fully adaptive, i.e., based on the GMR observed in stage 1

― Futility criterion on Nmax
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Operating Characteristics (Type 1 TSD [14])

GMR 0.95, power 80%, αadj 0.0294, Welch-Satterthwaite test
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Type I Error Power

0.02913 – 0.04888
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State of Affairs

Simulation-based methods for 2×2×2 crossovers [3–13]
• Ambiguous description in the EMA’s guideline,

regrettably incurred in other jurisdictions
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― Resulted in – unsubstantiated – deficiency letters

― Wariness in the industry about application of adaptive designs

There are actually more articles describing the theoretical and

statistical base for the application of the two-stage design than

there are reported studies. [26]

― Type 2 TSD recommended by the FDA and Health Canada [23,32]

Exact method for 2×2×2 crossovers [21] preferable

• Strict Type I Error control

• Flexible (fully adaptive, futility criteria)

Simulation-based method for parallel designs [14]

• At the time being the only available
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Outlook

Expand the exact method for 2×2×2 crossovers
• If a PK metric in the first stage is highly variable, perform the second 

stage in a replicate design intended for reference-scaling

― Scaling based on CVwR in the second stage
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Development of an exact method for parallel designs

• Not trivial because unequal sample sizes and variances

have to be taken into account

Simulation-based methods for RSABE/ABEL

• Practically impossible

― Stable sample size estimation requires 105 simulations taking conditions

of the regulatory frameworks into account

― 106 simulations to demonstrate control of the Type I Error

― With a reasonable narrow grid of n1 / CV-combinations

estimated runtime ≈50 years 24 / 7 on a current workstation 
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Thank You!
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Maximum empiric Type I Error

(106 simulations under the Null)

library(Power2Stage)

# Simulation-based (2×2×2 crossover, no futility); References 3, 4, 5

# Exact Power estimation by Owen’s Q-function 

method <- c("B", "C", "C", "B", "C", "C")

CV.loc <- c(0.24, 0.22, 0.20, 0.22, 0.10, 0.18)

n1.loc <- c(12, 12, 12, 12, 16, 12)

a      <- data.frame(Ref    = c(rep("[3]", 2), "[4]", rep("[5]", 3)),

Type   = c(1, 2, 2, 1, 2, 2),

Method = c("B ", "C ", "D ", "B ", "C/D", "C/D"),

GMR    = c(0.95, 0.95, 0.90, 0.95, 0.95, 0.90),

Power  = c(rep(80, 3), rep(90, 3)),

CV     = c(rep("10 – 100%", 3), rep("10  – 80%", 3)),

adj    = c(rep(0.0294, 2), 0.028, 0.0284, 0.0274, 0.0269))

for (i in 1:6) {

a$TIE.max[i] <- power.tsd(method = method[i], alpha0 = 0.05, alpha = rep(a$adj[i], 2),

CV = CV.loc[i], n1 = n1.loc[i], GMR = a$GMR[i],

targetpower = a$Power[i] / 100, pmethod = "exact",

theta0 = 1.25)$pBE

}

a$Power   <- sprintf("%.0f%%", a$Power)

a$TIE.max <- round(a$TIE.max, 4)

print(a, row.names = FALSE)
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Maximum empiric Type I Error

(106 simulations under the Null)

library(Power2Stage)

# Simulation-based (2×2×2 crossover, futility criteria); Reference 11

# Exact Power estimation by Owen’s Q-function

method  <- rep(c("B", "C"), 2)

CV.loc  <- c(rep(0.3, 2), rep(0.55, 2))

n1.loc  <- c(rep(18, 2), rep(48, 2))

fClower <- c(0.9374, 0.9305, 0.9492, 0.9350) # different futilities on CI

max.n   <- c(rep(42, 2), rep(180, 2))        # different futilities on Nmax

b       <- data.frame(Ref    = rep("[11]", 4), Type = c(1, 2, 1, 2),

Method = c("E  ", "F  ", "E  ", "F  "), GMR = rep(0.95, 4),

Power  = rep(80, 4), CV = c(rep("10 – 30%", 2), rep("30 – 55%", 2)),

adj1   = c(0.0249, 0.0248, 0.0254, 0.0259), # different alphas

adj2   = c(0.0363, 0.0364, 0.0357, 0.0349)) # in the stages

for (i in 1:4) {

b$TIE.max[i] <- power.tsd.fC(method = method[i], alpha0 = 0.05,

alpha = c(b$adj1[i], b$adj2[i]), CV = CV.loc[i], n1 = n1.loc[i],

GMR = b$GMR[i], targetpower = b$Power[i] / 100,

max.n = max.n[i], fCrit = "CI", fClower = fClower[i],

pmethod = "exact", theta0 = 1.25)$pBE

}

b$Power   <- sprintf("%.0f%%", b$Power)

b$TIE.max <- round(b$TIE.max, 4)

print(b, row.names = FALSE)
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Maximum empiric Type I Error

(106 simulations under the Null)

library(Power2Stage)

# Exact (2×2×2 crossover): Maximum Combination Test, no futility criteria; Reference 21

# Exact Power estimation by Owen’s Q-function

x       <- power.tsd.in(CV = 0.46, n1 = 62, weight = c(0.5, 0.25),

max.comb.test = TRUE, ssr.conditional = "error_power",

fCrit = "No", GMR = 0.95, targetpower = 0.8,

pmethod = "exact", theta0 = 1.25)

c       <- data.frame(Ref = "[21]", Method = "Maurer’s", GMR = 0.95, Power = 80,

CV = "10 – 80%", adj = round(x$alpha[1], 5), TIE.max = x$pBE)

c$Power <- sprintf("%.0f%%", c$Power)

print(c, row.names = FALSE)

# Exact (2×2×2 crossover): Standard Combination Method, no futility criteria; Reference 21

# Exact Power estimation by Owen’s Q-function

x       <- power.tsd.in(CV = 0.50, n1 = 70, weight = 0.5,

max.comb.test = FALSE, ssr.conditional = "error_power",

fCrit = "No", GMR = 0.95, targetpower = 0.8,

pmethod = "exact", theta0 = 1.25)

d       <- data.frame(Ref = "[21]", Method = "Maurer’s", GMR = 0.95, Power = 80,

CV = "10 – 80%", adj = round(x$alpha[1], 5), TIE.max = x$pBE)

d$Power <- sprintf("%.0f%%", d$Power)

print(d, row.names = FALSE)
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Exact (2×2×2 crossover)

Evaluation by Power2Stage [35]: Subjects 1–12 [3]

• Interim analysis with fixed GMR 0.95
interim.tsd.in(GMR1 = 1.0876, CV1 = 0.18213, n1 = 12, GMR = 0.95)

TSD with 2x2 crossover

Inverse Normal approach

- Maximum combination test with weights for stage 1 = 0.5 0.25

- Significance levels (s1/s2) = 0.02635 0.02635

- Critical values (s1/s2) = 1.93741 1.93741

- BE acceptance range = 0.8 ... 1.25

- Observed point estimate from stage 1 is not used for SSR

- With conditional error rates and conditional estimated target power

Interim analysis after first stage

- Derived key statistics:

z1 = 3.10000, z2 = 1.70344

Repeated CI = (0.92491, 1.27891)

Median unbiased estimate = NA

- No futility criterion met

- Test for BE not positive (not considering any futility rule)

- Calculated n2 = 6

- Decision: Continue to stage 2 with 6 subjects
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Exact (2×2×2 crossover)

Evaluation by Power2Stage [35]: Subjects 1–12 | 13–18 [3]

• Final analysis
final.tsd.in(GMR1 = 1.0876, CV1 = 0.18213, n1 = 12,

GMR2 = 1.0893, CV2 = 0.16776, n2 =  6)

TSD with 2x2 crossover

Inverse Normal approach

- Maximum combination test with weights for stage 1 = 0.5 0.25

- Significance levels (s1/s2) = 0.02635 0.02635

- Critical values (s1/s2) = 1.93741 1.93741

- BE acceptance range = 0.8 ... 1.25

Final analysis after second stage

- Derived key statistics:

z1 = 3.70299, z2 = 2.06106

Repeated CI = (0.95672, 1.23796)

Median unbiased estimate = 1.0953

- Decision: BE achieved

― Same conclusion as Potvin et al. ‘Method B’ [3] but slightly more 

conservative than its 94.12% CI with 0.9664 – 1.2252
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Example: Weights and power in stages

(minimum n2 = 6, futility Nmax = 5 × n1)

library(PowerTOST); library(Power2Stage)

CV  <- 0.3

n1  <- 0.8 * sampleN.TOST(CV = CV, print = FALSE)[["Sample size"]] # my recommendation

w1  <- w <- c(seq(0.9, 0.5, -0.1), 0.50)

w2  <- c(seq(0.1, 0.5, 0.1), 0.25)

MCT <- data.frame(Approach = "Maximum Combination Test",  w1 = w1, w2 = w2, n1 = n1)

SCM <- data.frame(Approach = "Standard Combination Method", w = w, n1 = n1)

for (i in seq_along(w1)) { # nmean is the expected average total sample size E[N]

x           <- power.tsd.in(CV = CV, n1 = n1, weight = c(w1[i], w2[i]), GMR = 0.95,

min.n2 = 6, fCrit = "Nmax", fCNmax = 5 * n1)

MCT$n2[i]   <- ceiling(x$nmean) - n1; MCT$adj[i] <- round(x$alpha[1], 5)

MCT$pBE1[i] <- x$pBE_s1; MCT$pBE2[i] <- x$pBE

x           <- power.tsd.in(CV = CV, n1 = n1, weight = w[i], max.comb.test = FALSE,

GMR = 0.95, min.n2 = 6,fCrit = "Nmax", fCNmax = 5 * n1)

SCM$n2[i]   <- ceiling(x$nmean) - n1; SCM$adj[i] <- round(x$alpha[1], 5)

SCM$pBE1[i] <- x$pBE_s1; SCM$pBE2[i] <- x$pBE

}

SCM <- SCM[-nrow(SCM), ]; MCT$Approach[2:nrow(MCT)] <- ""; SCM$Approach[2:nrow(SCM)] <- ""

print(MCT, row.names = FALSE, right = FALSE)

print(SCM, row.names = FALSE, right = FALSE)

• Similar average total sample sizes like in a fixed sample design

• Always higher power than fixed sample design

• ≈60% chance to stop in the interim for BE
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Operating Characteristics (Exact [21])

MCT: weights (0.25, 0.5) instead of the default (0.5, 0.25)
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Operating Characteristics (Exact [21])

GMR 0.95, power 80%, αadj 0.03037 (Standard Combination)
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Standard Combination Method

Minimum six subjects in stage 2

• Interim analysis with fixed GMR 0.95
interim.tsd.in(max.comb.test = FALSE, min.n2 = 6,

GMR1 = 1.0876, CV1 = 0.18213, n1 = 12, GMR = 0.95)

TSD with 2x2 crossover

Inverse Normal approach

- Standard combination test with weight for stage 1 = 0.5

- Significance levels (s1/s2) = 0.03037 0.03037

- Critical values (s1/s2) = 1.87542 1.87542

- BE acceptance range = 0.8 ... 1.25

- Observed point estimate from stage 1 is not used for SSR

- With conditional error rates and conditional estimated target power

Interim analysis after first stage

- Derived key statistics:

z1 = 3.10000, z2 = 1.70344

Repeated CI = (0.92491, 1.27891)

Median unbiased estimate = NA

- No futility criterion met

- Test for BE not positive (not considering any futility rule)

- Calculated n2 = 6

- Decision: Continue to stage 2 with 6 subjects
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Standard Combination Method

Minimum six subjects in stage 2

• Final analysis
final.tsd.in(max.comb.test = FALSE,

GMR1 = 1.0876, CV1 = 0.18213, n1 = 12,

GMR2 = 1.0893, CV2 = 0.16776, n2 =  6)

TSD with 2x2 crossover

Inverse Normal approach

- Standard combination test with weight for stage 1 = 0.5

- Significance levels (s1/s2) = 0.03037 0.03037

- Critical values (s1/s2) = 1.87542 1.87542

- BE acceptance range = 0.8 ... 1.25

Final analysis after second stage

- Derived key statistics:

z1 = 3.70299, z2 = 2.06106

Repeated CI = (0.96127, 1.23210)

Median unbiased estimate = 1.0884

- Decision: BE achieved

― Same conclusion as Maximum Combination Test; slightly less conser-

vative than its CI 0.9567 – 1.2380 due to αadj 0.03037 instead of 0.02635
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Maximum empiric Type I Error

(106 simulations under the Null)

library(Power2Stage)

# Simulation-based (parallel design): Welch-Satterthwaite test; Reference 14

# Exact Power estimation by Owen’s Q-function

TIE.max <- power.tsd.p(method = "B", alpha = rep(0.0294, 2),

CV = 0.52, n1 = 116, GMR = 0.95,

targetpower = 0.8, test = "welch",

pmethod = "exact", theta0 = 1.25)$pBE

e       <- data.frame(Ref = "[14]", Type = 1, Method = "B ", GMR = 0.95, Power = 80,

CV = "10 – 100%", adj = 0.0294, TIE.max = TIE.max)

e$Power <- sprintf("%.0f%%", e$Power)

print(e, row.names = FALSE)
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Example: Power

(parallel design [14])

library(PowerTOST); library(Power2Stage)

CV <- 0.45 # total (pooled from within- and between-subject) CV

n1 <- floor(0.8 * sampleN.TOST(CV = CV, design = "parallel",

print = FALSE)[["Sample size"]]) # my recommendation

power.tsd.p(method = "B", alpha = rep(0.0294, 2), CV = CV, n1 = n1,

pmethod = "exact", test = "welch", npct = c(0.05, 0.25, 0.5, 0.75, 0.95))

TSD with 2 parallel groups 

Method B: alpha (s1/s2) = 0.0294 0.0294 

CIs based on Welch's t-test 

Target power in power monitoring and sample size est. = 0.8

Power calculation via exact method 

CV1 and GMR = 0.95 in sample size est. used

No futility criterion

BE acceptance range = 0.8 ... 1.25

CV = 0.45; ntot(stage 1) = 128 (nT, nR = 64, 64); GMR = 0.95

1e+05 sims at theta0 = 0.95 (p(BE) = 'power').

p(BE)    = 0.82637

p(BE) s1 = 0.59414

Studies in stage 2 = 40.55%

Distribution of n(total)

- mean (range) = 155.5 (128 ... 316)

- percentiles

5% 25% 50% 75% 95% 

128 128 128 188 224
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• 100,000 simulations by default

• Probability to stop in the interim for success ≈59%

• Probability to procees to second stage ≈41%

• Expected average total sample size E[N] 156

• Final power larger than fixed sample design’s 80% 

with 160 subjects
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Example: Empiric Type I Error

(parallel design [14])

library(PowerTOST); library(Power2Stage)

CV <- 0.45 # total (pooled from within- and between-subject) CV

n1 <- floor(0.8 * sampleN.TOST(CV = CV, design = "parallel",

print = FALSE)[["Sample size"]]) # my recommendation

power.tsd.p(method = "B", alpha = rep(0.0294, 2), CV = CV, n1 = n1,

pmethod = "exact", test = "welch", npct = 0.5, theta0 = 1.25)

TSD with 2 parallel groups 

Method B: alpha (s1/s2) = 0.0294 0.0294 

CIs based on Welch's t-test 

Target power in power monitoring and sample size est. = 0.8

Power calculation via exact method 

CV1 and GMR = 0.95 in sample size est. used

No futility criterion

BE acceptance range = 0.8 ... 1.25

CV = 0.45; ntot(stage 1) = 128 (nT, nR = 64, 64); GMR = 0.95

1e+06 sims at theta0 = 1.25 (p(BE) = TIE 'alpha').

p(BE)    = 0.044659

p(BE) s1 = 0.029288

Studies in stage 2 = 96.94%

Distribution of n(total)

- mean (range) = 190.5 (128 ... 330)

- percentiles

50% 

190
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• At the limits of the BE range one million simula-

tions by default

• Probability to pass in the interim close to the level 

of the test

• Type I Error controlled (<0.05, significance limit of 

the binomial test 0.05036)


