Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Assessment of BE of implants

Appropriate study design, metrics, and acceptance criteria

Helmut Schütz

BEBAC
General considerations

- Implants exhibit desirable properties
 - Delivery of APIs which cannot be effectively administered via the oral route (e.g., peptides, hormones,…).
 - Increased compliance compared to even OAD MR formulations.
 - Zero-order input (i.e., constant delivery rate) lead to steady-state plasma levels with little fluctuations.
 - More cost-effective health care delivery (e.g., reduced number of visits to the physician for s.c. depot injections).
General considerations

- Desirable properties...
 - Steady-state levels preserved if implants are changed.
 - Drug quickly eliminated after removal of implant; no ‘tail’ effect like after depot injections.
General considerations

- Problems
 - *In vitro* release for manufacturing QC difficult to standardize.
 - Insertion procedures invasive with a wide range of applications (from s.c. to implantation of drug-eluting stents).
 - Pharmacokinetic characterisation of *in vivo* data far from trivial in many cases. Metrics commonly applied in BE (AUC, C_{max}) estimated by noncompartmental methods (NCA) not always suitable.
General considerations

- Problems
 - Cross-over design not suitable if implant is kept in place for long time – or is not intended to be removed at all.
 - Parallel designs challenging (low statistical power, sequential designs difficult).
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Excursion into PK

- i.v.
- $ka = 8 \times kel$
- $ka = 4 \times kel$
- $ka = 2 \times kel$
- $ka = kel$ (flip flop)
- $ka = kel / 2$
- $ka = kel / 4$
- $ka = kel / 8$

[i.v. line graph with concentration on the y-axis and time (h) on the x-axis, showing various ka values leading to different concentration profiles over time]
Excursion into PK

![Graph showing PK concentration over time for different ka values: i.v., $ka = 8 \times kel$, $ka = 4 \times kel$, $ka = 2 \times kel$, $ka = kel$ (flip flop), $ka = kel / 2$, $ka = kel / 4$, $ka = kel / 8$.](image-url)
SD – Steady State

- Single dose studies generally considered to be most sensitive in detection differences between formulations
 - Any zero-order input will lead to steady state; time to reach state state dependent on the ratio of input rate and k_{el}.
 - Flip-flop PK: ‘terminal phase’ represents input rate rather than k_{el}.
 - If input rate \neq zero order, but decreasing, profile looks like common first order input! No extrapolation; AUC from $t = 0$ to timepoint of removal.
Hormonal implant

68 mg etonogestrel
Release rate decreasing from 60–70 µg/d after insertion to 40 µg/d at start of 2nd year and 25–30 µg/d at the end of the 3rd year.
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Wash-out vs. Switch-over

- wash-out $5 \times t^{1/2}$
- P_2 / P_1
- AUC: 100.00%
- C_{max}: 100.00%

Graph showing concentration over time (days) with wash-out and switch-over periods.
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Wash-out vs. Switch-over

P₂ / P₁
AUC: 100.07%
Cₘₐₓ: 100.05%
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Leuprolide Osmotic Pump

An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer
J Control Rel 75(1-2), 1–10 (2001)

Mean + SD (n=27)
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Leuprolide Osmotic Pump

Crawford ED, Sartor O, Chu F, Perez R, Karlin G, Garrett JS
A 12-month clinical study of LA-2585 (45.0 mg): a new 6-month subcutaneous delivery system for leuprolide acetate for the treatment of prostate cancer

Mean ± SD (n=28)
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Sufentanil Osmotic Pump

Fisher DM, Kellett N, Lenhardt R
Metrics

- Extent of absorption / total exposure
 - AUC
 - No extrapolation to t = \(\infty \) if implant is removed.

- Rate of absorption / peak exposure
 - For strict zero-order input and decreasing input rate
 \(C_{\text{max}} \) of doubtful value – might occur at any time within the sampling interval due to random fluctuations (‘apples-and-oranges’ statistics).
 - \(C_{\text{max}} \) useful for implants showing a lag-time or mixed input (first-order/zero-order).
Metrics

- Rate of absorption / peak exposure
 - Peak-to-Trough Fluctuation
 - C_{min} only if clinically relevant (example: 0.1 ng/mL leuprolide \rightarrow <50 ng/dL testosterone)
 - Global C_{min} within the sampling interval – not at the end (C_{trough})!
 - Partial AUC?
 - Characterization of input function by deconvolution / PopPK modeling. Regulatory acceptance?
Design Challenges

- Mainly studies in patients
- Cross-over not feasible for implants intended for long-term use or changes in disease state (carry-over)
- Parallel groups lack statistical power
- Whenever possible, additional PD data should be considered
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Statistical Challenges

- *A priori* sample size estimation required for pivotal studies
 - Pilot studies not feasible due to long duration
 - Sequential designs problematic (second stage after interim analysis doubles run time)
 - Interim analysis for early stopping?
- Cross-over not feasible for implants intended for long-term use or changes in disease state (carry-over)
Statistical Challenges

- Substantial variability require large sample sizes for conventional BE acceptance range (AR)
 - Reference scaling requires replicate cross-over
 - A priori widening of ARs – based on clinical data?
 - For implants with short-time use (e.g., 1–2 weeks) PK metrics may be corrected for actual clearance, either by an i.v. dose prior to administration or by simultaneous i.v. administration of a stable isotope.
Assessment of bioequivalence of implants: Appropriate study design, metrics, and acceptance criteria

Thank You!

Assessment of bioequivalence of implants

Helmut Schütz
BEBAC
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at
To bear in Remembrance...

The fundamental cause of trouble in the world today is that the stupid are cocksure while the intelligent are full of doubt. *Bertrand Russell*

In these matters the only certainty is that nothing is certain. *Gaius Plinius Secundus (Pliny the Elder)*

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young. *Konrad Lorenz*