Establishing the Biostudy Statistical Design Helmut Schütz

1

Fleming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

Excursion: Assumptions in statistics

All models rely on assumptions.

• Log-transformation allows for additive effects required in ANOVA.

- No carry-over effect in the model of crossover studies.
 - Cannot be statistically adjusted.
 - Has to be avoided by design (suitable washout).
 - Shown to be a statistical artifact in meta-studies.
 - Exception: Endogenous compounds (biosimilars!)
- Between- and within-subject errors are independently and normally distributed about unity with variances σ_s^2 and σ_e^2 .
 - If the reference formulation shows higher variability than the test, the 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - No monocygotic twins or triplets in the study!

Excursion: Error(s)

All formal decisions are subjected to two 'Types' of Error.

- α: Probability of Type I Error (aka Risk Type I)
- β: Probability of Type II Error (aka Risk Type II)

Example from the justice system – which presumes that the defendant is *not guilty*:

Verdict	Defendant innocent	Defendant guilty
Presumption of innocence <i>rejected</i> (<i>guilty</i>)	wrong	correct
Presumption of innocence accepted (not guilty)	correct	wrong

ne -

Excursion: Hypotheses

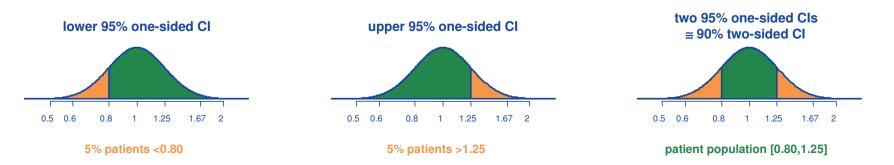
In statistical terminology

- Null hypothesis (H_0) : innocent
- Alternative hypothesis (H_a aka H_1): guilty

Decision	Null hypothesis true	Null hypothesis false	
H ₀ rejected	Type I Error	Correct (accept <i>H_a</i>)	
Failed to reject <i>H</i> ₀	Correct (accept <i>H</i> ₀)	Type II Error	

In BE the Null hypothesis is bioinequivalence ($\mu_T \neq \mu_R$)!

Decision	Null hypothesis <i>true</i>	Null hypothesis false	
<i>H</i> ₀ rejected	Patient's risk (α)	Correct (BE)	
Failed to reject <i>H</i> ₀	Correct (not BE)	Producer's risk (β)	



Excursion: Type I Error

α : Patient's risk to be treated with an inequivalent formulation (H_0 falsely rejected)

- BA of the test compared to reference in a *particular* patient is considered to be risky *either* below 0.80 *or* above 1.25.
 - If we keep the risk of *particular* patients at α 0.05 (5%), the risk of the entire *population* of patients (where BA <0.80 *and* >1.25) is 2α (10%) – expressed as a confidence interval: $100(1 - 2\alpha) = 90\%$.

 However, since in a patient BA cannot be <0.80 and >1.25 at the same time, the patient's risk from a 90% CI is still 5%!

Excursion: Type II Error

- β: Producer's risk to get no approval of an equivalent formulation (H_0 falsely not rejected)
- Fixed in study planning to 0.1 \leq 0.2 (10 \leq 20%), where power = 1 β = \geq 80 90%.

If all assumptions in sample size estimations turn out to be correct and power was set to 80%,

one out of five studies will fail just by chance!

• A posteriori (post hoc) power is irrelevant! Either a study has demonstrated bioequivalence or not.

Review of Guidelines

Minimum sample size.

- 12 WHO, EU, CAN, USA, AUS, NZ, AR, MZ, ASEAN States, RSA, Russia ('Red Book'), EAEU, Ukraine.
 - USA 'A *pilot study* that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.'

- 18 Russia (2008).
- 20 RSA (MR formulations).
- 24 Saudia Arabia (12 to 24 if statistically justifiable), Brazil, USA (replicate designs intended for RSABE), EU (RTR|TRT replicate designs intended for ABEL).
- 'Sufficient number' Japan, 'adequate' India.

Maximum sample size.

• Generally not specified (decided by IEC/IRB and/or local Authorities).

7

Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

Power vs. Sample Size

It is not possible to *directly* obtain the required sample size.

- The required sample size depends on
 - the acceptance range (AR) for bioequivalence;
 - the error variance (s^2) associated with the PK metrics as estimated from
 - published data,
 - a pilot study, or
 - previous studies;
 - the fixed significance level (α);
 - the expected deviation (Δ) from the reference product and;
 - the desired power (1β) .
- Three values are known and fixed (AR, α, 1 − β), one is an assumption (Δ), and one an estimate (s²). Hence, the correct term is 'sample size estimation'.

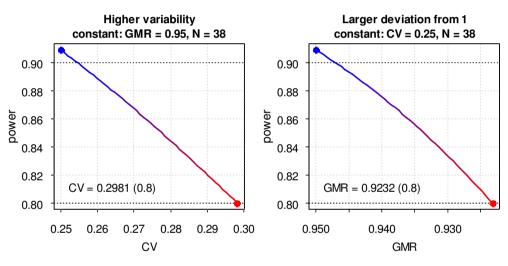
Power vs. Sample Size

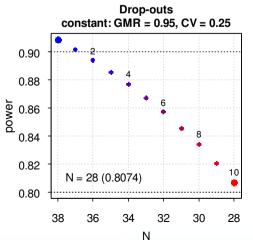
Only power is accessible.

- The sample size is searched in an iterative procedure until at least the desired power is obtained.
 - *n* power (%) Example: α 0.05, target power 80% (β 0.2), 16 73.5 expected GMR 0.95, CV_{intra} 20% \rightarrow 17 76.4 minimum sample size 19 (power 81.3%), 79.1 18 rounded up to the next even number in a 19 81.3 $2 \times 2 \times 2$ study (power 83.5%). 83.5 20
 - Exact methods for average bioequiivalence (ABE) in parallel, crossover, and replicate designs are available.
 - Simulations suggested for Group-Sequential and Two-Stage Designs (GSD, TSD).
 - Simulations mandatory: Reference-scaled average bioequivalence (FDA: RSABE), average bioequivalence with expanding limits (EMA: ABEL).

Notation of cross-over designs: treatments \times sequences \times periods

Power vs. Sample Size


How many subjects are 'enough'?

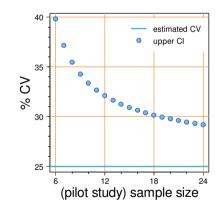

- Most guidelines recommend 80 90% power.
 - If a study is planned for ≤70% power, problems with the ethics committee are possible (ICH E9).
 - If a study is planned for >90% power (especially with low variability drugs), additional problems with regulators are possible ('forced bioequivalence').
 - Some subjects ('alternates') may be added to the estimated sample size according to the expected drop-out rate – especially for studies with more than two periods or multiple-dose studies.
- According to ICH E9 a sensitivity analysis is mandatory to explore the impact on power if values deviate from assumptions.

Power Analysis

Example 2×2×2, ABE

- Assumed *GMR* 0.95,
 CV_w 0.25, desired power 0.9,
 min. acceptable power 0.8.
 - Sample size 38 (power 0.909)
 - *CV_w* can increase to 0.298 (rel. +19%)
 - GMR can decrease to 0.923 (rel. -2.8%)
 - 10 drop-outs acceptable (rel. –26%)
 - Most critical is the GMR!

Fleming.


Dealing with Uncertainty

Nothing is 'carved in stone'.

- Never assume perfectly matching products.
 - Generally a Δ of not better than 5% should be assumed (0.9500 1.0526).
 - For HVD(P)s do not assume a \triangle of <10% (0.9000 1.1111).
- Do not use the CV but one of its confidence limits.
 - Suggested α 0.2 (here: the producer's risk).
 - For ABE the upper CL.
 - For reference-scaling the lower or upper CL.
- Alternatives exist.
 - Group-Sequential Designs

Fixed total sample size, interim analysis for early stopping.

 (Adaptive) Sequential Two-Stage Designs
 Fixed stage 1 sample size, re-estimation of the total sample size in the interim analysis.

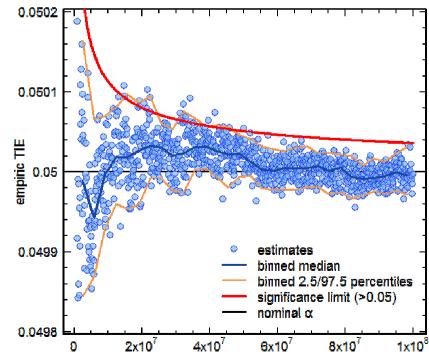
Type I Error.

- In BE the Null Hypothesis (H_0) is *inequivalence*.
 - TIE = Probability of falsely rejecting H_0 (*i.e.*, accepting H_a and claiming BE).
 - Can be calculated for the nominal significance level (α) assuming a *GMR* (θ_0) at one of the limits of the acceptance range [θ_1 , θ_2].
 - Example: 2×2×2 cross-over, CV 20%, n 20, α 0.05, $\theta_0 = [\theta_1 \ 0.80 \ or \ \theta_2 \ 1.25]$. library(PowerTOST) AR <- c(1-0.20, 1/(1-0.20)) # common acceptance range: 0.80-1.25 power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AR[1]) [1] 0.0499999 power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AR[2]) [1] 0.0499999
 - TOST is not a uniformly most powerful (UMP) test. power.TOST(CV=0.20, n=12, alpha=0.05, theta0=AR[2])

[1] 0.04976374

- However, the TIE never exceeds the nominal level. power.TOST(CV=0.20, n=72, alpha=0.05, theta0=AR[2]) [1] 0.05

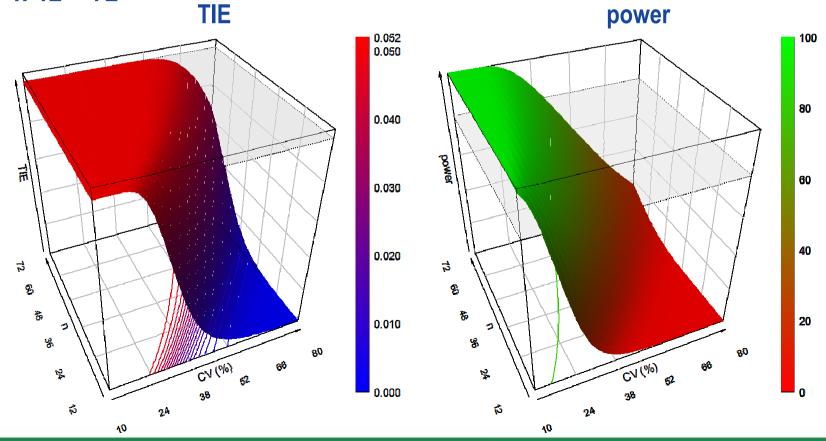
Labes D, Schütz H, Lang B. PowerTOST: Power and Sample size based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. R package version 1.4-2. 2016. <u>https://cran.r-project.org/package=PowerTOST</u>


Type I Error.

Alternatively perform simulations to obtain an empiric Type I Error. power.TOST.sim(CV=0.20, n=20, alpha=0.05, theta0=AR[2], nsims=1e8)

[1] 0.04999703

 In other settings (*i.e.*, frameworks like Two-Stage Designs or reference-scaled ABE) analytical solutions for power – and therefore, the TIE – are not possible: Simulations are required.


2×2×2 crossover, CV 0.2, n 20 (theoretical Type I Error 0.04999999 for α 0.05)

number of simulations

Type I Error and power.

• Fixed sample $2 \times 2 \times 2$ design (α 0.05). *GMR* 0.95, *CV* 10 - 80%, *n* 12 - 72

Feming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

15

Dealing with Uncertainty

Variability in the study different from assumption.

- If higher, we gain power. Demonstrate BE even for a worse *GMR*.
- If lower, we loose power. Chances to demonstrate BE decreases and we might loose *a lot* of money (repeat a failed study).
- (Adaptive) Two-Stage Designs
 - First publication in 2008.
 - Many follow-ups (different *GMR*s, power, parallel designs, futility rules).
 - Acceptable according to GLs (EMA 2010, AUS 2011, HC 2012, FDA 2013, Russia 2013, NZ 2015).

16

ne -

(Adaptive) Sequential Two-Stage Designs

Methods by Potvin *et al.* (2008) were the first validated frameworks in the context of BE.

- Supported by the 'Product Quality Research Institute' (FDA/CDER, Health Canada, USP, AAPS, PhRMA, ...).
- Inspired by conventional BE testing and Pocock's α_{adi} 0.0294 for GSDs.
 - A fixed *GMR* is assumed (only the *CV* in the interim is taken into account for sample size re-estimation). *GMR* in the first publication was 0.95; later extended to 0.90 by other authors.
 - Target power 80% (later extended to 90%).
 - Two 'Types' (Schütz 2015)
 - 1. The same adjusted α is applied in both stages (regardless whether a study stops in the first stage or proceeds to the second stage).
 - 2. An unadjusted α may be used in the first stage, dependent on interim power.

17

Schütz H. *Two-stage designs in bioequivalence trials*. Eur J Clin Pharmacol. 2015;71(3):271–81. <u>DOI 10.1007/s00228-015-1806-2</u>

(Adaptive) Sequential Two-Stage Designs

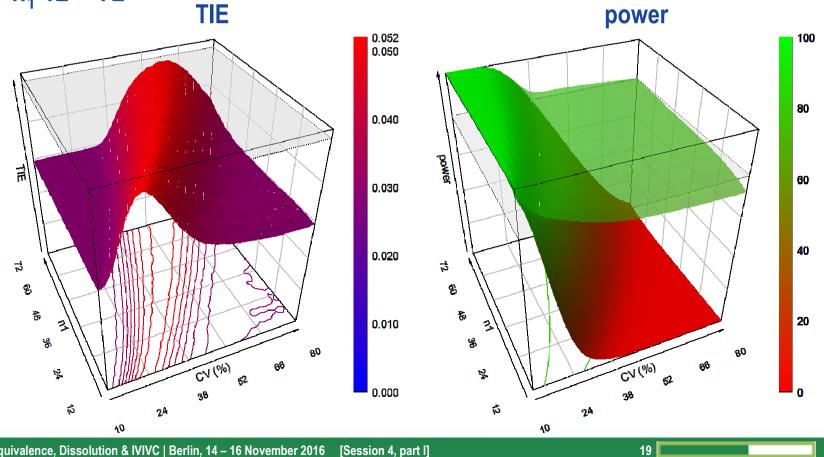
Frameworks for crossover TSDs.

• Stage 1 sample sizes 12 – 60, no futility rules.

Reference	Туре	Method	GMR	Target power	CV _w	$lpha_{adj}$	TIE _{max}
Potvin e <i>t al.</i> (2008)	1	В	0.95 80%		0.0004	0.0485	
	2	С		80%	10 – 100%	0.0294	0.0510
Montague et al. (2012)	2	D	0.90			0.0280	0.0518
Fuglsang (2013)	1	В	0.95			0.0284	0.0501
	2	C/D		90%	10 - 80%	0.0274	0.0503
	2	C/D	0.90			0.0269	0.0501

• Xu et al. (2015). GMR 0.95, target power 80%, futility for the $(1-2\alpha_1)$ Cl.

Туре	Method	CV _w	Futility region	α,	α	TIE _{max}
1	Е	10 – 30%	0.9374 - 1.0667	0.0249	0.0363	0.050
2	F	10 – 30%	0.9374 - 1.0667 0.9492 - 1.0535	0.0248	0.0364	0.050
1	Е	30 – 55%	0.9305 - 1.0747	0.0254	0.0357	0.050
2	F	30 - 33%	0.9305 - 1.0747 0.9350 - 1.0695	0.0259	0.0349	0.050

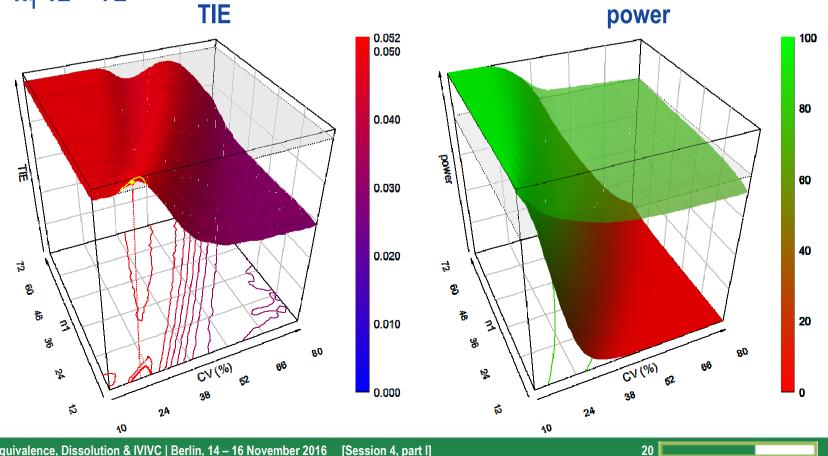


Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

Type I Error and power.

'Type 1' TSD (Potvin Method B, α_{adj} 0.0294). *GMR* 0.95, *CV* 10 – 80%, $n_1 12 - 72$

BE ·


Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

Fleming.

Type I Error and power.

'Type 2' TSD (Potvin Method C, α_{adj} 0.05|0.0294). *GMR* 0.95, *CV* 10 – 80%, $n_1 12 - 72$

BE ·

Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part I]

Fleming.

(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

- Consider certain questions:
 - Is it possible to assume a best/worst-case scenario?
 - How large should the size of the first stage be?
 - How large is the expected average sample size in the second stage?
 - Which power can one expect in the first stage and the final analysis?
 - Will introduction of a futility criterion substantially decrease power?
 - Is there an unacceptable sample size penalty compared to a fixed sample design?

(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

- Example:
 - Expected CV 20%, GMR 0.95, target power 80%.

Comparison of a 'Type 1' TSD with a fixed sample design (*n* 20, 83.5% power).

n ₁	E [N]	Studies stopped in stage 1 (%)	Studies failed in stage 1 (%)		Studies in stage 2 (%)	Final power (%)	Increase of costs (%)
12	20.6	43.6	2.3	41.3	56.4	84.2	+2.9
14	20.0	55.6	3.0	52.4	44.5	85.0	+0.2
16	20.1	65.9	3.9	61.9	34.1	85.2	+0.3
18	20.6	74.3	5.0	69.3	25.7	85.5	+3.1
20	21.7	81.2	6.3	74.9	18.8	86.2	+8.4
22	23.0	87.2	7.3	79.8	12.8	87.0	+15.0
24	24.6	91.5	7.9	83.6	8.5	88.0	+22.9

Labes D, Schütz H. Power2Stage: Power and Sample-Size Distribution of 2-Stage Bio-equivalence Studies. R package version 0.4-3. 2015. https://cran.r-project.org/package=Power2Stage

High variability

Assumptions (again).

- Between- and within-subject errors are independently and normally distributed about unity with variances σ_s^2 and σ_e^2 .
 - If the reference formulation shows higher variability than the test, the 'good' test will be penalized for the 'bad' reference.

High variability can be

- an intrinsic property of the drug itself (low absorption and/or inter-occasion clearance) and/or
- attributed to the product's performance.
 - Physiology (enteric coated formulations and gastric emptying).
 - Absorption: rate of drug release and absorption window.
 - Influence of excipients
 - on gastric motility and/or
 - on transporters.

HV

High variability

It may be almost impossible to demonstrate BE of HVD(P)s with a reasonable sample size.

• Example: CV 70%, GMR 0.90, target power 80%, 2×2×2 design

library(PowerTOST)
sampleN.TOST(CV=0.7, theta0=0.9, targetpower=0.9, design="2x2x2")
+++++++++ Equivalence test - TOST +++++++++
Sample size estimation

```
Study design: 2x2 crossover
log-transformed data (multiplicative model)
alpha = 0.05, target power = 0.8
BE margins = 0.8 ... 1.25
True ratio = 0.9, CV = 0.7
Sample size (total)
n power
358 0.801175
```

- Since HVD(P)s are safe and efficacious some jurisdictions accept a larger 'not clinically relevant' difference (Session 2).
 - The BE limits can be *scaled* based on the variability of the reference.
 - Details in part II.

Only necessary for MR products (EMA 2014)

- BE must be demonstrated both in fasting and fed state.
 - Three approaches recommended in the GL:
 - (1) A fully randomized $2 \times 4 \times 4$ cross-over study (T and R; both fasting and fed).
 - Or two cross-over studies (different designs):
 - » (2) A 2×2×2 cross-over in fasting state and a 2×6×3 cross-over, where T and R are administered in fed state and T additionally in fasting state.
 - » (3) A 2×2×2 cross-over in fasting state and a 2×2×2 cross-over in fed state.

ne ·

Only necessary for MR products (EMA 2014)

• BE must be demonstrated both in fasting and fed state.

- Fully randomized 2×4×4 study (approach 1).
 - Pro: The comparison is done based on a common (pooled) variance of fasting and fed state. It is possible to assess not only BE in fasting and fed state but also the food effect of T and R in a cross-over (higher power than in the two 2×2×2 studies evaluated as parallel groups).

- Con: The sample size is lead by the likely higher variability of fed state. Unclear whether the evaluation is unbiased in a simultaneous evaluation – maybe the 'leave one out' approach can be used.
- Two cross-over studies.
 - Alternative 1 (approach 2):
 - » 2×2×2: BE ($T_{fasting}$ vs. $R_{fasting}$).
 - \Rightarrow 2×6×3: BE (T_{fed} vs. R_{fed}) and food effect of Test (T_{fed} vs. T_{fasting}).

- Alternative 2 (approach 3):

Only necessary for MR products (EMA 2014)

BE must be demonstrated both in fasting and fed state.

—	Altern	ative 1	(2>
	_		-

T_{fast} R_{fast} R_{fast.} T_{fast.}

T_{fed} R_{fed}

T_{fast}

 $\mathsf{T}_{\mathsf{fed}}$

T_{fast}

 $\mathsf{T}_{\mathsf{fed}}$

 R_{fed}

 $\mathsf{R}_{\mathsf{fed}}$

T_{fast.}

 $\mathsf{T}_{\mathsf{fed}}$

I fast.

T_{fast}, R_{fast} R_{fast.} T_{fast.}

T_{fed} R_{fed}

R_{fed} T_{fed}

T_{fast.}

T_{fed}

R_{fed}

R_{fed}

T_{fast}

T_{fed}

- $\times 2 \times 2$ and $2 \times 6 \times 3$).
 - **Pro:** Since for most products the variability in fed state is larger than in fasting state, sample sizes can be different.
 - The assessment of the food effect of the Test is performed in the second cross-over study and thus powerful.
 - Con: The food effect of the Reference is not directly accessible. A comparison of its food effects between studies is statistically demanding.
- Alternative 2 (two $2 \times 2 \times 2$ studies).
 - Pro: Sample sizes can be different.
 - Both studies can be performed in Two-Stage Sequential Designs allowing to increase the sample size if necessary (Sessions 4.II and 10). The food effects of both T and R can be assessed as parallel groups.
 - Con: The comparison of food effects is much less powerful than in a cross-over design. The outcome might be inconclusive (due to lacking power).

DAC

Only necessary for MR products (EMA 2014)

- BE must be demonstrated both in fasting and fed state.
- My preferred alternative: A *partly* randomized 2×2×4 study.
 - In the first part (per. 1 & 2: fed) subjects are randomized like in a $2 \times 2 \times 2$ study.

- In the second part (per. 3 & 4: fasting) the same subjects are randomized like in a 2×2×2 study.
- Pros:
 - » BE can be demonstrated in fed state (part 1) and fasting state (part 2) in a conventional cross-over design.
 - » If one has reliable information about the variabilities in fed and fasting state ($CV_{\text{fasting}} < CV_{\text{fed}}$), it is possible to perform part 2 in fewer subjects.
 - » It is possible to design the two parts as Two-Stage Sequential Designs allowing to increase the sample size if necessary (Sessions 4.II and 10).
 - The food effect of T and R can be evaluated as a *paired* design, which is almost as powerful as a cross-over.

28

- Con: The paired design relies on *no* period effect. However, that's common in assessing linear PK by innovators: MD $AUC_{0-\tau}$ vs. SD $AUC_{0-\infty}$.

Only necessary for MR products (EMA 2014)

- As long as BE is demonstrated both in fasting and fed state a *different* food effect (of Test and Reference) will not loose the war.
 - A similar food effect is not required only 'nice to know'.
 Failing might be pure chance (lack of power especially if two 2×2×2 studies were performed).
 - If the Test shows a *significantly lower* food effect than the Reference, the EMA welcomes the 'better' product.
 - However, in such a case the applicant could prefer not to claim 'essential similarity' (generic pathway: 2001/83/EC Art. 10(1)) but opt for a 'hybrid application' (additional clinical studies: 2001/83/EC Art. 10(3)) instead.
 - Whether proving such an advantage for the patient (better compliance) over the reference pays off is another story.

29

MR and the need for steady state studies

FDA

• MD-study generally not required.

Health Canada

• MD-study only required if accumulation can be expected based on the SD-study:

 $AUC_{0-\tau}/AUC_{0-\infty} > 80\%$ of $AUC_{0-\infty}$, where τ is the intended dosing interval.

MR and the need for steady state studies

EMA 2014

- PK metrics in the SD-study:
 - $C_{max}, AUC_{0-t}, AUC_{0-\infty}.$
 - Truncated AUC₀₋₇₂ like for IR-products is not acceptable!
 - » Many MR products show flip-flop PK (absorption slower than elimination).
 - » Hence, the *late* part of the curve represents *absorption*.
 - Cut-off for accumulation: $AUC_{0-\tau}/AUC_{0-\infty} > 90\%$ (!) of $AUC_{0-\infty}$.
- Prolonged release products
 - With accumulation:
 - MD required. PK metrics: $C_{max,ss}$, $C_{r,ss}$, AUC_{0-r,ss}.
 - *Without* accumulation:
 - MD not required.
 - Additionally in the SD-study: PK metrics representative of the shape of the curve (e.g., early and terminal partial AUCs).

MR and the need for steady state studies

EMA 2014

- Delayed release products
 - MD not required.
- Multiphasic MR products
 - Additionally in the SD-study:
 - $C_{\max(x)}$, $C_{\max(x+1)}$, $pAUC_{(x)}$, $pAUC_{(x+1)}$, where x is/are pre-defined cut-off time(s).
 - With accumulation:
 - MD required. PK metrics: $C_{max,ss}$, $C_{\tau,ss}$, AUC_{0- τ,ss}.
 - Without accumulation:
 - MD not required.

Establishing the Biostudy Statistical Design

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>