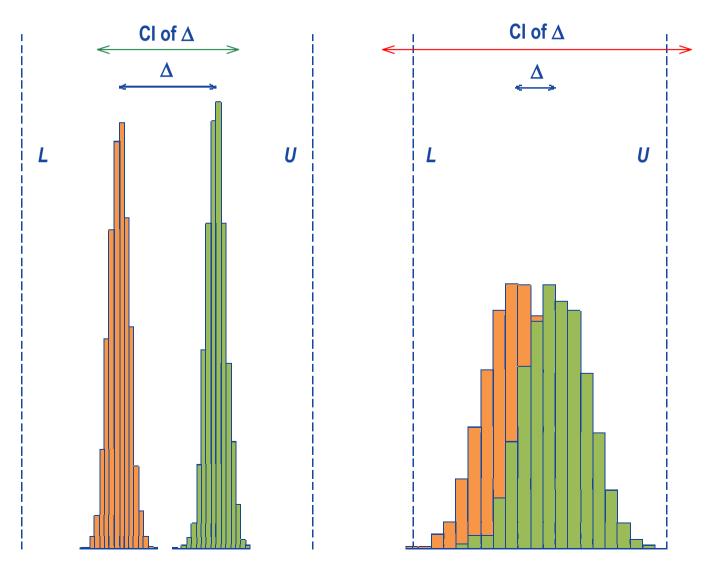
Establishing the Biostudy Statistical Design Helmut Schütz

Fleming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part II]

Study Designs


The more 'sophisticated' a design is, the more information can be extracted.

- Hierarchy of designs: Full replicate (RTRT | TRTR or RTR | TRT) → Partial replicate (RRT | RTR | TRR) → 2×2×2 cross-over (RT | TR) → Parallel (R | T)
- Variances which can be estimated:

Parallel:total variance (pooled of between + within subjects)2×2×2 cross-over:+ between, within subjects 分Partial replicate:+ within subjects (of R) 分Full replicate:+ within subjects (of R and T) 分

nc ·

Highly Variable Drugs / Drug Products

Counterintuitive concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low, but not BE – even if the difference is quite small – due to high variability.

Modified from Tothfálusi *et al.* (2009), Fig. 1

3

Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part II]

It may be almost impossible to demonstrate ABE with a reasonable sample size.

 Reference-scaling (*i.e.*, widening the acceptance range based of the variability of the reference) in 2010 introduced by the FDA and EMA and in 2016 by Health Canada.

- Requires a replicate design, where at least the reference product is administered twice.
- Smaller sample sizes compared to a standard 2×2×2 design but outweighed by increased number of periods.
- Similar total number of individual treatments.
- Any replicate design can be evaluated for 'classical' (unscaled) Average Bioequivalence (ABE) as well. Switching CV_{wR} 30%:
 - FDA: AUC and C_{max}
 - EMA: C_{max} ; MR products additionally: $C_{ss,t}$, $C_{ss,t}$, partial AUCs

4

– Health Canada: AUC

Models (in log-scale).

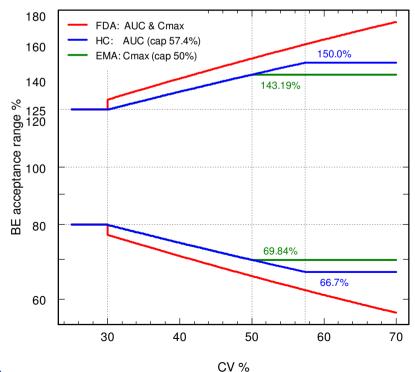
- ABE Model:
 - A difference \triangle of \leq 20% is considered to be clinically not relevant.
 - The limits [L, U] of the acceptance range are fixed to $log(1 \Delta) = log((1 \Delta)^{-1})$ or $L \sim -0.2231$ and $U \sim +0.2231$.
 - The consumer risk (α) is fixed with 0.05. BE is concluded if the 100(1 2 α) confidence interval lies entirely within the acceptance range.

 $-\boldsymbol{\theta}_{A} \leq \boldsymbol{\mu}_{T} - \boldsymbol{\mu}_{R} \leq +\boldsymbol{\theta}_{A}$

- SABEL Model:
 - Switching condition θ_s is derived from the regulatory standardized variation σ_0 (proportionality between acceptance limits in log-scale and σ_{wR} in the highly variable region).

$$-\theta_{s} \leq \frac{\mu_{T} - \mu_{R}}{\sigma_{wR}} \leq +\theta_{s}$$

5


ne ·

Regulatory Approaches.

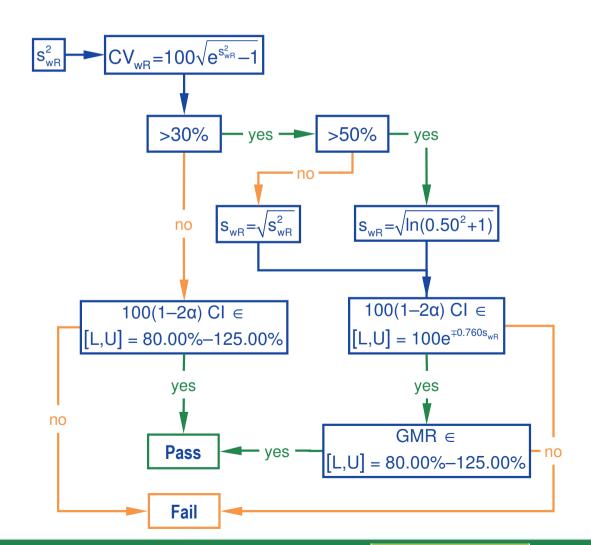
• Bioequivalence limits derived from σ_0 and σ_{wR}

$$\theta_{s} = \frac{\log(1.25)}{\sigma_{0}}, \ [L,U] = e^{\pm\theta_{S}\cdot\sigma_{wR}}$$

- FDA
 - Scaling σ_{wR} 0.25 (θ_{s} 0.893) but applicable at $CV_{wR} \ge 30\%$.
 - Discontinuity at CV_{wR} 30%.
- EMA
 - Scaling $\sigma_{\!_0}$ 0.2936 ($\theta_{\!_S}$ 0.760).
 - Upper cap at CV_{wR} 50%.
- Health Canada
 - Like EMA but upper cap at CV_{wR} 57.4%.

6

The EMA's Approach.


- Average Bioequivalence with Expanding Limits ABEL (crippled from Endrényi and Tóthfalusi 2009).
 - Justification that the widened acceptance range is clinically not relevant (important – different to the FDA).

- Assumes identical variances of *T* and *R* [*sic*] like in a $2 \times 2 \times 2$.
- All fixed effects model according to the Q&A-document preferred.
- Mixed-effects model (allowing for unequival variances) is 'not compatible with CHMP guideline'...
- Scaling limited at a maximum of CV_{wR} 50% (*i.e.*, to 69.84 143.19%).
- *GMR* within 0.8000 1.2500.
- Demonstration that $CV_{wR} > 30\%$ is not caused by outliers (box plots of studentized intra-subject residuals?)...
- \geq 12 subjects in sequence RTR of the 3-period full replicate design.

The EMA's Approach.

- Decision Scheme.
 - The Null Hypothesis is *specified* in the face of the data.
 - Acceptance limits themselves become random variables.
 - Type I Error (consumer risk) might be inflated.

8

Fleming.

Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 4, part II]

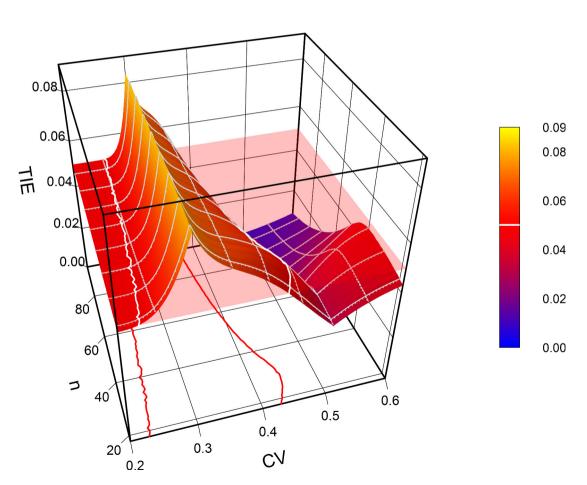
Assessing the Type I Error (TIE).

- TIE = falsely concluding BE at the limits of the acceptance range.
- Due to the decision scheme direct calculation of the TIE at the scaled limits is not possible;

ne -

- \rightarrow extensive simulations required (10⁶ BE studies mandatory).
- Inflation of the TIE suspected. (Chow *et al.* 2002, Willavazie and Morgenthien 2006, Chow and Liu 2009, Patterson and Jones 2012).
- Confirmed.
 - EMA's ABEL

(Tóthfalusi and Endrényi 2009, BEBA-Forum 2013, Wonnemann *et al.* 2015, Muñoz *et al.* 2016, Labes and Schütz 2016).


9

- FDA's RSABE

(Tóthfalusi and Endrényi 2009, BEBA-Forum 2013, Muñoz et al. 2016).

Example for ABEL

- RTRT | TRTR sample size 18 – 96 CV_{wR} 20% – 60%
 - TIE_{max} 0.0837.
 - Relative increase of the consumer risk 67%!

What is going on here?

• SABE is stated in model parameters ...

$$-\theta_{s} \leq \frac{\mu_{T} - \mu_{R}}{\sigma} \leq +\theta_{s}$$

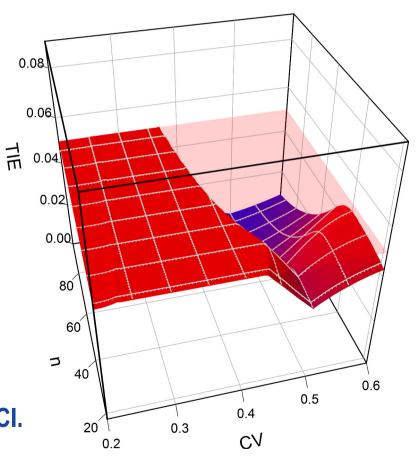
- ... which are unknown.
- Only their estimates (GMR, s_{wR}) are accessible in the actual study.

nc ·

- At CV_{wR} 30% the decision to scale will be wrong in ~50% of cases.
- If moving away from 30% the chances of a wrong decision decrease and hence, the TIE.
- At high CVs (>43%) both the scaling cap and the GMR-restriction help to maintain the TIE <0.05).

Outlook.

- Utopia
 - Agencies collect CV_{wR} from submitted studies. Pool them, adjust for designs / degrees of freedom. The EMA publishes a fixed acceptance range in the product-specific guidance. No need for replicate studies any more. 2×2×2 cross.overs evaluated by ABE would be sufficient.


- Halfbaked
 - Hope [*sic*] that *e.g.*, Bonferroni preserves the consumer risk. Still apply ABEL, but with a 95% CI (α 0.025).
 - Drawback: Loss of power, substantial increase in sample sizes.
- Proposal
 - Iteratively adjust α based on the study's CV_{wR} and sample size in such a way that the consumer risk is preserved (Labes and Schütz 2016).

12

Labes D, Schütz H. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control. Pharm Res. 2016; 33(11): 2805–14. DOI 10.1007/s11095-016-2006-1

Previous example


- Algorithm
 - Assess the TIE for the nominal α 0.05.
 - If the TIE \leq 0.05, stop.
 - Otherwise adjust α (downwards) until the TIE ≅ 0.05.
 - At CV_{wR} 30% (dependent on the sample size) α_{adj} is 0.0273 - 0.0300; \rightarrow use a 94.00 - 94.54% CL

13

Potential impact on the sample size.

- Example: RTRT | TRTR, θ_0 0.90, target power 0.80.
 - Moderate in the critical region (— —).
 - CV_{wR} 30%: 36 \rightarrow 42 (+17%);
 - CV_{wR} 35%: 34 \rightarrow 38 (+12%);
 - CV_{wR} 40%: 30 \rightarrow 32 (+7%).
 - None outside (—).

Example (RTRT | TRTR, expected CV_{wR} 35%, θ_0 0.90, target power 0.80); R package PowerTOST (\geq 1.3-3).

• Estimate the sample size.

15

[1] 34

• Estimate the empiric TIE for this study.

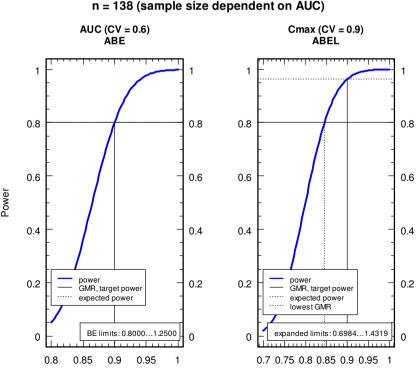
```
UL <- scABEL(CV=0.35)[["upper"]] # scaled limit (1.2948 for CVwR 0.35)
power.scABEL(CV=0.35, theta0=UL, n=34, design="2x2x4", nsims=1e6)
[1] 0.065566</pre>
```

• Iteratively adjust α.

```
CVWR 0.35, n(i) 17|17 (N 34)
Nominal alpha : 0.05
Null (true) ratio : 0.9000
Regulatory settings : EMA (ABEL)
Empiric TIE for alpha 0.0500 : 0.06557
Power for theta0 0.900 : 0.812
Iteratively adjusted alpha : 0.03630
Empiric TIE for adjusted alpha: 0.05000
Power for theta0 0.900 : 0.773
```

Fleming.

• Optionally compensate for the loss in power (0.812 \rightarrow 0.773) by increasing the sample size:


sampleN.scABEL.ad(CV=0.35, theta0=0.90, targetpower=0.80, design="2x2x4") Sample size estimation for iteratively adjusted alpha Study design: 2x2x4 (RTRT|TRTR) Expected CVwR 0.35 Nominal alpha : 0.05 Null (true) ratio : 0.9000 Target power : 0.8 Regulatory settings: EMA (ABEL) Switching CVwR : 30% Regulatory constant: 0.760 Expanded limits : 0.7723...1.2948 Upper scaling cap : CVwR 0.5 PE constraints : 0.8000...1.2500 n 38, adj. alpha: 0.03610 (power 0.8100), TIE: 0.05000

- *n* 34 → 38 (+12%), power 0.773 → 0.810, α_{adj} 0.0363 → 0.0361.

Side Effect

Allowing ABEL only for C_{max} .

- Some drugs show high variability in AUC as well.
 - Since in such a case the sample size is mandated by AUC, products with high deviations in C_{max} will be approved.
 - Example: CV_{wR} 90% (C_{max}), 60% (AUC), θ_0 0.90, target power 80% \rightarrow the study is 'overpowered' for C_{max}; *C_{max}-GMR*s of [0.846 – 1.183] will pass BE. Really desirable?
 - With the FDA's RSABE the study could be performed in only 34 subjects...

17

GMR

ABEL (EMA): design RTRT TRTR, target power = 0.8, n = 138 (sample size dependent on AUC)

-DAC

NTIDs – tighter BE limits

EMA (2010)

- In specific cases of products with a narrow therapeutic range, the acceptance interval may need to be tightened.
 - The acceptance interval for *AUC* should be tightened to 90.00 111.11%.
 - Where C_{max} is of particular importance for safety, efficacy or drug level monitoring the 90.00 111.11% acceptance interval should also be applied for this parameter.
 - It is not possible to define a set of criteria to categorise drugs as narrow therapeutic index drugs (NTIDs) and it must be decided *case by case* if an active substance is an NTID *based on clinical considerations*.

EMA (Product-specific guidance 2013 – 2016)

- Sirolimus: 80.00 125.00% for C_{max}, 90.00 111.11% for AUC_{0-t}.
- Tacrolimus: 80.00 125.00% for C_{max} , 90.00 111.11% for AUC_{0-72h}.

ne -

NTIDs – tighter BE limits

Impact of tighter BE limits on sample size

- Example: CV 15%, GMR 0.975, target power 90%, 2×2×2 design.
 - Conventional 80.00 125.00%

- 90.00 - 111.11%

[1] 62

NTIDs – reference scaling

FDA

- First recommended in the guidance for warfarin (2012).
 - Scale bioequivalence limits to the variability of the reference product.
 - Compare test and reference product within-subject variability.
 - A fully replicated 4-period study (RTRT | TRTR) is mandatory.
- Scaling approach similar to the FDA's for HVD(P)s.
 - $-\sigma_0$ 0.10 (CV \approx 10.02505%)
 - − ∆ 1.11111
- Must demonstrate:
 - BE with the scaled approach.
 - BE with the conventional limits.
 - Variance of T not higher than of R (upper 90% CI of $\sigma_{wT} / \sigma_{wR} \le 2.5$)

NTIDs – sample sizes

GMR 0.975, $CV_{wT} = CV_{wR}$, target power 90%, 2×2×4 design.

	90.00 – 111.11% EMA	RSABE FDA		
CV _{wR}	п			
5.0	12*	44		
7.5	12*	26		
10.0	14	22		
12.5	22	20		
15.0	32	20		
20.0	54	18		

As above; $CV_{wT} = 1.5 \times CV_{wR}$, FDA's RSABE	CV _{wR}	CV _{wT}	n
	5.0	7.50	48
	7.5	11.25	36
	10.0	15.00	32
	12.5	18.75	30
	15.0	22.50	30
	20.0	30.00	28

21

Establishing the Biostudy Statistical Design

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>