Practical Advice for Implementing Two-Stage Designs

Üdvözöljük!

Practical Advice for Implementing Two-Stage Designs

Helmut Schütz
BEBAC
BE Study Designs

- Long half life and/or patients in unstable conditions?
 - yes: parallel design
 - no: paired design
 - >2 formulations?
 - yes: fixed sample design
 - CV >30?
 - yes: multi-arm parallel higher-order cross-over
 - no: replicate design (reference scaling)
 - no: 2×2 cross-over design replicate (unscaled)
 - no: two-stage design
 - yes: replicate design (reference scaling)
 - no: reliable informations about CV?
 - yes: two-stage design
 - no: replicate design (reference scaling)
 - no: paired design cross-over design

*Currently no two-stage design if:
- >2 formulations
- Replicate design
- Futility rules (e.g., maximum sample size) in TSDs problematic.*
Add-on / Two-Stage Designs

- Sometimes properly designed and executed studies fail due to
 - ‘true’ bioinequivalence,
 - poor study conduct (increasing variability),
 - pure chance (producer’s risk hit),
 - false (mainly over-optimistic) assumptions about the CV and/or T/R-ratio.

- The patient’s risk must be preserved
 - Already noticed at Bio-International Conferences (1989, 1992) and guidelines from the 1990s.
Sequential Designs

- Have a long and accepted tradition in clinical research (mainly phase III)
 - First proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe, but
 - new methods stated in recent guidelines.

AL Gould
Group Sequential Extension of a Standard Bioequivalence Testing Procedure
DOI: 10.1007/BF02353786
Sequential Designs

- Methods by Potvin et al. (2008) first validated framework in the context of BE
 - Supported by the ‘Product Quality Research Institute’ (members: FDA/CDER, Health Canada, USP, AAPS, PhRMA…)
 - Three of BEBAC’s protocols accepted by German BfArM, first product approved in 06/2011.

Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, and RA Smith
Sequential design approaches for bioequivalence studies with crossover designs
Review of Guidelines

- **EMA (Jan 2010)**
 Acceptable; Potvin et al. Method B preferred (?)

- **Canada (May 2012)**
 Potvin et al. Method C recommended

- **FDA (Jun 2012)**
 Potvin et al. Method C/D recommended
 API specific guidances: Loteprednol, (Dexamethasone / Tobramycin)

- **Russia (2013)**
 Acceptable; Potvin et al. Method B preferred (?)
Potvin et al. (Method B)

Evaluate BE at stage 1 ($\alpha = 0.0294$)

- **yes**
 - BE met?
 - yes: Pass
 - no: Evaluate power at stage 1 using α-level of 0.0294

- **no**
 - Evaluate power at stage 1 using α-level of 0.0294
 - ≥80%?
 - yes: Estimate sample size based on CV_{intra}, T/R 0.95, $\alpha = 0.0294$; continue to stage 2
 - no: Fail
 - Evaluate BE at stage 2 using pooled data from both stages ($\alpha = 0.0294$)
 - Pass or fail
Potvin et al. (Method B)

1150 \cdot 10^6 \text{ Sim's (Method B)}
Potvin et al. (Method B)

$1150 \cdot 10^6$ Sim’s (Method B)

$1 - \beta$
Potvin et al. (Method B)

1150 \times 10^6 \text{Sim's (Method B)}

CV

% in stage 2

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
6%

12 24 36 48 60

\(n_1 \)
Potvin et al. (Method B)

Sample size penalty (CV 14–40%, 80% power)

\[n_{\text{total}} = 1.084n \]

\[n_{\text{total}} = 1.023n \]

- planned for 0.0500
- planned for 0.0294
Potvin et al. (Method B)

- Technical Aspects
 - Only one Interim Analysis (after stage 1).
 - Use software (wide step sizes in Diletti’s tables); preferably the exact method (avoid approximations).
 - Should be termed ‘Interim Power Analysis’ not ‘Bioequivalence Assessment’ in the protocol.
 - No a posteriori Power – only a validated method in the decision tree.
 - No adjustment for T/R observed in stage 1 (not fully adaptive).
Technical Aspects (cont’d)

- No futility rule preventing to go into stage 2 with a very high sample size!
 Must be clearly stated in the protocol (unfamiliar to the IEC because common in Phase III).
- Pocock’s $\alpha = 0.0294$ is used in stage 1 and in the pooled analysis (data from stages 1 + 2),
 i.e., the $1 - 2 \times \alpha = 94.12\%$ CI is calculated.
- Overall patient’s risk preserved at ≤ 0.05.
Potvin et al. (Method B)

Technical Aspects (cont’d) + EMA modification

- If the study is stopped after stage 1, the statistical model is:

 \[
 \text{fixed: sequence + period + treatment} \\
 + \text{subject(sequence)}
 \]

- If the study continues to stage 2, the model for the combined analysis is:

 \[
 \text{fixed: stage + sequence + sequence(stage)} \\
 + \text{subject(sequence × stage) + period(stage)} \\
 + \text{treatment}
 \]

- No poolability criterion! Combining is always allowed – even if a significant difference between stages is observed. No need to test this effect.
Potvin et al. (Method B)

- Technical Aspects (cont’d) + EMA modification
 - Incomprehensible why this modification was introduced by EMA’s Biostatistical Working Party
 - Simulations performed or “gut feeling”?
 - Modification shown to be irrelevant.
 - Furthermore no difference whether subjects were treated as a fixed or random term (unless T/R > 1.20).

Karalis V and P Macheras
On the Statistical Model of the Two-Stage Designs in Bioequivalence Assessment
Potvin et al. (Method B)

- Technical Aspects (cont’d)
 - Potvin et al. used a simple approximative power estimation based on the shifted central \(t \)-distribution.
 - If possible use the exact method (Owen; \(R \) package `PowerTOST` method = 'exact') or at least one based on the noncentral \(t \)-distribution (`PowerTOST` method = 'noncentral').
 - Power obtained in stage 1 (example 2 from Potvin):

method	% power
approx. (shifted centr. \(t \))	50.49
approx. (noncentral \(t \))	52.16
exact (Owen’s Q)	52.51
Example (Potvin Method B)

Model Specification and User Settings
- Dependent variable: Response
- Transform: LN
- Fixed terms: int+Sequence+Period+Treatment
- Random/repeated terms: Sequence*Subject

Final variance parameter estimates:
- Var(Sequence*Subject) = 0.408682
- Var(Residual) = 0.0326336
- Intrasubject CV = 0.182132

Bioequivalence Statistics
- User-Specified Confidence Level for CI's = 94.12%
- Percent of Reference to Detect for 2-1 Tests = 20.0%
- A.H.Lower = 0.800 A.H.Upper = 1.250
- Reference: Reference LSMean = 0.954668 SE = 0.191772 GeoLSM = 2.597808
- Test: Test LSMean = 1.038626 SE = 0.191772 GeoLSM = 2.825331

- Difference = 0.0840 Diff_SE = 0.0737 df = 10.0
- Ratio(%Ref) = 108.7583

Classical
- CI User = (92.9330, 127.2838)

Failed with 94.12% Confidence Interval

12 subjects in stage 1, conventional BE model!

α 0.0294

CV_{intra} 18.2%
Example (Potvin Method B)

library(PowerTOST)
power.TOST(alpha=0.0294, theta0=0.95, CV=0.182132, n=12, design='2x2', method='exact')

[1] 0.5251476

Power 52.5% – initiate stage 2

sampleN.TOST(alpha=0.0294, targetpower=0.80, theta0=0.95, CV=0.182132, design='2x2', method='exact')

+++++++++++ Equivalence test - TOST ++++++++++
Sample size estimation

Study design: 2x2 crossover
log-transformed data (multiplicative model)

alpha = 0.0294, target power = 0.8
BE margins = 0.8 ... 1.25
Null (true) ratio = 0.95, CV = 0.182132

Sample size
n power
20 0.829160

Total sample size 20: include another 8 in stage 2

\[\alpha = 0.0294, T/R 95\% – not 108.76\% observed in stage 1!\]
\[CV_{intra} 18.2\%, 12 subjects in stage 1\]

Estimate total sample size:
\[\alpha = 0.0294, T/R 95\%, CV_{intra} 18.2\%, 80\% power\]

Simulations (n, 12, CV 18.2%)
\[\alpha_{emp} 0.042635\]
\[power 85.3\%\]
Example (Potvin Method B / EMA)

Model Specification and User Settings
Dependent variable: Cmax (ng/mL)
Transform: LN
Fixed terms: int + Stage + Sequence + Sequence*Stage
+ Sequence*Stage*Subject + Period(Stage) + Treatment

Final variance parameter estimates:
\begin{itemize}
 \item \text{Var(Sequence*Stage*Subject)} = 0.549653
 \item \text{Var(Residual)} = 0.0458956
 \item Intrasubject CV = 0.216714
\end{itemize}

Bioequivalence Statistics
User-Specified Confidence Level for CI's = 94.1200
Percent of Reference to Detect for 2-1 Tests = 20.0%
A.H.Lower = 0.800 A.H.Upper = 1.250
Formulation variable: Treatment
Reference: Reference LSMeans = 1.133431 SE = 0.171385 GeoLSM = 3.106297
Test: Test LSMeans = 1.147870 SE = 0.171385 GeoLSM = 3.151473

\begin{itemize}
 \item Difference = 0.0144, Diff_SE = 0.0677, df = 17.0
 \item Ratio(%Ref) = 101.4544
 \item Classical CI 90% = (90.1729, 114.1472)
 \item \text{CI User} = (88.4422, 116.3810)
\end{itemize}

Average bioequivalence shown for confidence=94.12 and percent=20.0.
Potvin et al. (Method C)

Evaluate power at stage 1 using α-level of 0.050

- yes ≥80%?
 - no Evaluate BE at stage 1 (α 0.0294)
 - yes Evaluate BE at stage 1 (α 0.050)

- yes Evaluate BE at stage 2 using pooled data from both stages (α 0.0294)
 - yes Pass
 - no Pass or fail

- no BE met?
 - yes Estimate sample size based on CV_{intra} T/R 0.95, α 0.0294; continue to stage 2
 - no Pass or fail
Potvin et al. (Method C)

1150·10^6 Sim’s (Method C)
Potvin *et al.* (Method B vs. C)

Pros & cons

- **Method C** (*if power ≥80%*) is a conventional BE study; no penalty in terms of α needs to be applied.

- Method C proceeds to stage 2 less often and has smaller average total sample sizes than Method B for cases where the initial sample size is reasonable for the CV.

- If the size of stage 1 is low for the actual CV both methods proceed to stage 2 almost all the time; total sample sizes are similar.

- Method B slightly more conservative than C.
Potvin et al. (Method B vs. C)

Recommendations

- Method C/D preferred due to slightly higher power than method B (FDA, HPFB). Method B for EMA (?)

- Plan the study *as if* the CV is known
 - If assumptions turn out to be true = no penalty
 - If lower power (CV higher than expected), BE still possible in first stage (penalty; 94.12% CI) or continue to stage 2 as a ‘safety net’.

- Don’t jeopardize! Smaller sample sizes in the first stage than in a fixed design don’t pay off.
 Total sample sizes are ~10–20% higher.
TSDs: Alternatives

- **Methods by Potvin et al.** (2008) limited to T/R of 0.95 and 80% power

 Follow-up publications (T/R 0.95…0.90, 80…90% power)

<table>
<thead>
<tr>
<th>reference</th>
<th>method</th>
<th>T/R</th>
<th>target power</th>
<th>CV</th>
<th>$\alpha_{\text{adj.}}$</th>
<th>max. $\alpha_{\text{emp.}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>B</td>
<td>0.95</td>
<td></td>
<td></td>
<td>0.0294</td>
<td>0.0485</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td>0.0510</td>
</tr>
<tr>
<td>Montague et al.</td>
<td>D</td>
<td>0.90</td>
<td></td>
<td></td>
<td>0.0280</td>
<td>0.0518</td>
</tr>
<tr>
<td>Fuglsang</td>
<td>B</td>
<td>0.95</td>
<td></td>
<td></td>
<td>0.0284</td>
<td>0.0501</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.90</td>
<td></td>
<td></td>
<td>0.0274</td>
<td>0.0503</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.90</td>
<td></td>
<td></td>
<td>0.0269</td>
<td>0.0501</td>
</tr>
</tbody>
</table>

Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, and DJ Schuirmann

Additional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’
Pharmaceut Statist 11(1), 8–13 (2011) DOI: 10.1002/pst.483

A Fuglsang

Sequential Bioequivalence Trial Designs with Increased Power and Controlled Type I Error Rates
Montague et al. (Method D)

1150 · 10^6 Sim’s (Method D)

CV

α

0.02750
0.02961
0.03173
0.03385
0.03596
0.03807
0.04019
0.04230
0.04442
0.04653
0.04865
0.05000

0.029615
0.031730
0.033845
0.035960
0.038075
0.040190
0.042305
0.044420
0.046535
0.048650
0.050000

0.05100
0.05000
0.04865
0.04653
0.04442
0.04230
0.04019
0.03807
0.03596
0.03385
0.03173
0.02961
0.02750

12 24 36 48 60

6% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n_1
TSDs: Alternatives

 - Based on Method C ($\alpha_{adj.} 0.0294$) or D ($\alpha_{adj.} 0.0280$)
 - Sample size re-estimation based on observed T/R-ratio in stage 1
 - Upper sample size limit (UL)
 - Frameworks:
 - n_1 12–96, CV 10–60%, $n_1+n_2 \leq$ UL 150
 - n_1 18–96, CV 20–40%, $n_1+n_2 \leq$ UL 100

Karalis V and P Macheras
An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies

V Karalis
The role of the upper sample size limit in two-stage bioequivalence designs
Evaluate power at stage 1 using \(\alpha \)-level of 0.050

- yes
 - \(\geq 80\% \)?
 - yes
 - Evaluate BE at stage 1 (\(\alpha 0.050 \))
 - no
 - Evaluate BE at stage 1 (\(\alpha 0.0294 \))

- no
 - T/R\(_{\text{stage 1}}\) \{0.8, 1.25\}
 - yes
 - no
 - no
 - Fail

Evaluate BE at stage 1 (\(\alpha 0.0294 \))

- yes
 - BE met?
 - yes
 - Estimate sample size based on \(CV_{\text{intra}} \) & T/R\(_{\text{stage 1}}\), \(\alpha 0.0294 \)
 - no
 - T/R\(_{\text{stage 1}}\) \{0.8, 1.25\}
 - yes
 - no
 - no
 - Fail

- no
 - Pass or fail
 - Pass
 - Fail

Evaluate BE at stage 2 using pooled data from both stages (\(\alpha 0.0294 \))

- yes
 - \(n_1 + n_2 > UL? \)
 - yes
 - Pass or fail
 - no
 - Fail
- no
 - Pass or fail
Karalis & Macheras (n ≤150)

578·10^6 Sim's (Karalis/Macheras)
Karalis & Macheras (n ≤ 150)

57.8·10^6 Sim’s (Karalis/Macheras)
library(PowerTOST)

power.TOST(alpha=0.05, theta0=1.0876, CV=0.182132, n=12, design='2x2', method='exact')

[1] 0.531698

Sample size estimation

α 0.05, observed T/R 108.76%, CV_{intra} 18.2%, 12 subjects in stage 1

Power 53.2% – initiate stage 2

sampleN.TOST(alpha=0.0294, targetpower=0.80, theta0=1.0876, CV=0.182132, design='2x2', method='exact')

+++++++++++ Equivalence test - TOST ++++++++++++ Sample size estimation

Study design: 2x2 crossover log-transformed data (multiplicative model)

α = 0.0294, target power = 0.8
BE margins = 0.8 ... 1.25
Null (true) ratio = 1.0876, CV = 0.182132

Sample size

n power
28 0.813921

Total sample size 28 (≤150): include another 16 in stage 2

α 0.0294, T/R 108.76%, CV_{intra} 18.2%, 80% power

Estimate total sample size:

Simulations (n, 12, CV 18.2%, UL 150)
• α_{emp} 0.049681
• power 89.1%
Karalis & Macheras (Expl. a)

- CV assumed as 20%, T/R 95%
 - In a fixed sample design for 80% power sample sizes would be 20 ($\alpha 0.05$) or 24 ($\alpha 0.0294$).
 - The sponsor chooses n_1 24 and UL 100.
 - 10^6 simulations (Potvin C), 10^5 (K & M)

<table>
<thead>
<tr>
<th>method</th>
<th>(overall) power</th>
<th>power (stage 1)</th>
<th>% studies to stage 2</th>
<th>$n_{95%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>90.1</td>
<td>88.1</td>
<td>4.2</td>
<td>24</td>
</tr>
<tr>
<td>Karalis & Macheras</td>
<td>94.8</td>
<td>83.5</td>
<td>11.4</td>
<td>66</td>
</tr>
</tbody>
</table>

- ~Three times as many studies forced to stage 2 with a high probability of large sample sizes.
Karalis & Macheras (Expl. b)

CV assumed as 40%, T/R 95%

- Fixed sample design n 66 ($\alpha 0.05$) or 80 ($\alpha 0.0294$).
- The sponsor chooses n_1 60 and UL 150.
- 10^6 simulations (Potvin C), 10^5 (K & M)

<table>
<thead>
<tr>
<th>method</th>
<th>(overall) power</th>
<th>power (stage 1)</th>
<th>% studies to stage 2</th>
<th>$n_{95%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>83.6</td>
<td>69.7</td>
<td>23.8</td>
<td>98</td>
</tr>
<tr>
<td>Karalis & Macheras</td>
<td>74.2</td>
<td>67.2</td>
<td>7.2</td>
<td>130</td>
</tr>
</tbody>
</table>

- Power <80%; only $\sim \frac{1}{3}$ of studies proceed to stage 2, although with considerably larger sample sizes.

Labes D and H Schütz
An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies: A Rejoinder
Pharm Res (submitted 2013)
Futility Rules revised

- EMA GL Section 4.1.8 ‘Two-stage design’
 “[…] the stopping criteria should be clearly defined prior to the study.”

 - What does that mean?
 - Failing in stage 1 or the pooled analysis according to the chosen method.
 → Part of the validated frameworks.
 - Early stopping for futility (e.g., ‘bad’ ratio, extreme stage 2 sample size caused by high CV – better to opt for reference-scaling…).
 → Not validated. A misunderstanding by regulators (stopping criterion ≠ futility rule).
Futility Rules revised

- Introduction of a futility rule does not inflate the patient’s risk, but power may drop substantially!
 - State stopping criteria unambiguously in the protocol.
 - If you want to introduce a futility rule, simulations are mandatory in order to maintain sufficient power.

 “Introduction of [...] futility rules may severely impact power in trials with sequential designs and under some circumstances such trials might be unethical.”

A Fuglsang

Futility Rules in Bioequivalence Trials with Sequential Designs

APPS J 16(19), 79–82 (2014) DOI: 10.1208/s12248-013-9540-0
Advanced Example

- ‘Must pass’ BE in stage 1 (first to file)
 - Fixed T/R 90% (pessimistic; very likely better)
 - Expected CV 20% (pilot study with two references)
 - ~30% expected drop-out rate; start with 88 to have $n_1 \geq 60$
 - Targets
 - >90% power for $n_1 \geq 60$ – even for extreme CV of 45%
 - 90% power for $n_1 \geq 60$ (CV 20%) in stage 1
 - Not <80% power for CV \(\geq \) 25% in stage 1
 - Low probability to proceed to stage 2
Advanced Example

- ‘Must pass’ BE in stage 1 (first to file)
 - Sponsor preferred Method B (EU submission...)
 - Fuglsang published $\alpha_{adj.} = 0.0269$ for T/R 0.90 and 90% power – but only for Method C...
 - Same $\alpha_{adj.}$ applicable?
 - Likely...
 - Potvin et al. showed less inflation with Method B.
 - Fuglsang needed less adjustment in Method B.
 - But we have to justify that!
 - 10^6 sim’s for α and 10^5 for power.
 - Thanks to Detlew Labes for R package *Power2Stage*!
Advanced Example

270 \cdot 10^6 \text{ Sim's (Fuglsang mod. B: T/R 90\%, power 90\%)}

CV
- 45\%
- 40\%
- 35\%
- 30\%
- 25\%
- 20\%
- 15\%
- 10\%

n_1
- 12
- 24
- 36
- 48
- 60
- 72
- 84

CV
Advanced Example

‘Must pass’ BE in stage 1 (first to file)

- Targets met
 - 93% power for $n_1 \geq 60$ (CV 20%) and 90% for extreme CV of 45%
 - 90% power for $n_1 \geq 60$ (CV 20%) in stage 1
 - Low chances to proceed to stage 2 with CV 20%:
 - $n_1 \geq 60$: 6%, $n_1 \geq 72$: 1%
 - $\geq 80%$ power for CV $\geq 20\%$, even for a more extreme drop-out rate
 - $\alpha_{adj.} \leq 0.0271$ would work as well (with $0.0278 < 0.052$)

- Study passed in the first stage (February 2014)
TSDs: Parallel Design

- A Fuglsang (2014)
 - Based on Potvin’s Methods B/C ($\alpha_{adj.} = 0.0294$, 80% power)
 - Framework: $n_1 = 48–120$, CV 10–100%
 - Explored
 - equal and unequal variances of groups
 - conventional t-test and Welch-Satterthwaite approximation
 - Results
 - No significant α-inflation
 - Power $\geq 78.4\%$

A Fuglsang
Sequential Bioequivalence Approaches for Parallel Designs
AAPS J, Epub ahead of print (Feb 2014), DOI: 10.1208/s12248-014-9571-1
Fuglsang (Method B)

806 \times 10^6 \text{ Sim's (Method B, Welch-test)}
Fuglsang (Method B)

80.6·10^6 Sim's (Method B, Welch-test)

CV_{total} % vs \(n_1 \)

\(1 - \beta \)
Case Study 1 (EMA)

- Method C: Study passed BE in stage 1 (49 subjects, CV 30.65%, 90% CI)
 - UK/Ireland: Unadjusted α in stage 1 not acceptable.
 - Study passed BE with 94.12% CI as well (post hoc switch to Method B).
 - Austria: The Applicant should demonstrate that the type I error inflation, which can be expected from the chosen approach, did not impact on the decision of bioequivalence.
 - One million simulations based on the study’s sample size and CV.
 $\alpha_{emp} = 0.0494$ (95% CI: 0.0490 – 0.0498)
Case Study 2 (EMA)

- Method C: Study stopped in stage 1
 - AUC power >80%: passed BE with 90% CI
 - C_{max} power <80%: passed BE with 94.12% CI

 - The Netherlands: Adapting the confidence intervals based upon power is not acceptable and also not in accordance with the EMA guideline. Confidence intervals should be selected priori, without evaluation of the power. Therefore, the applicant should submit the 94.12% confidence intervals for AUC.

 - AUC fails BE with 94.12% CI
 - Sponsor repeated the study with a very (!) large sample size and failed on C_{max}. Project cancelled.
Case Study 3 (EMA)

- Method C: Two studies passed in stage 1 (n=15 SD, n=16 MD, C_{max} CV 17.93%, 8.54%, 90% CIs)
- Would have passed with Method B as well; however, 94.12% CIs were not reported.
 - RMS Germany. Accepted by CMSs Austria, Denmark, Sweden, and The Netherlands.
 - Spain: Statistical analysis should be GLM. Please justify.
 - Evaluated with all-fixed effects model.
 Both studies passed.
 Issue resolved (September 2013)
Outlook

- Feasibility / futility rules.
- Arbitrary expected T/R and/or power.
- Methods without interim power.
- Dropping a candidate formulation from a higher-order cross-over; continue with 2×2.
- Full adaptive methods.
- Exact method (not depending on simulations).
- Application to replicate designs / scaling.
Don’t panic!

conventional 2×2 cross-over (fixed sample design)
Thank You!

Practical Advice for Implementing Two-Stage Designs

Open Questions?

Helmut Schütz
BEBAC
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at
To bear in Remembrance...

The fundamental cause of trouble in the world today is that the stupid are cocksure while the intelligent are full of doubt.

Bertrand Russell

In bioequivalence we must not forget the only important – *the patient*! He/she is living person, not just $\alpha 0.05$.

Dirk Marteen Barends

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young.

Konrad Lorenz
References

- **ICH**
- **EMA-CPMP/CHMP/EWP**
 - Points to Consider on Multiplicity Issues in Clinical Trials (2002)
 - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2013)
- **US-FDA**
 - Center for Drug Evaluation and Research (CDER)
 - Statistical Approaches Establishing Bioequivalence (2001)
 Draft Guidance on Dexamethasone/Tobramycin (Jun 2012)
 - DB Owen
 - Diletti E, Hauschke D, and VW Steinijans
 - Sample size determination for bioequivalence assessment by means of confidence intervals
 - AL Gould
 - *Group Sequential Extension of a Standard Bioequivalence Testing Procedure*
 - DOI: 10.1007/BF02353786
 - Hauck WW, Preston PE, and FY Bois
 - *A Group Sequential Approach to Crossover Trials for Average Bioequivalence*
 - DOI: 10.1080/10543409708835171
 - Patterson S and B Jones
 - Determining Sample Size, in: Bioequivalence and Statistics in Clinical Pharmacology
 - SA Julious
 - Sample Sizes for Clinical Trials
 - DB Owen
 - http://cran.r-project.org/web/packages/PowerTOST/PowerTOST.pdf
References

- D Labes
 Package ‘Power2Stage’, Version 0.0-8 (2014-04-11)
 http://cran.r-project.org/web/packages/Power2Stage/Power2Stage.pdf
- Potvin D et al.
 Sequential design approaches for bioequivalence studies with crossover designs
 DOI: 10.1002/pst.294
- Montague TH et al.
 Additional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’
 Pharmaceut Statist 11(1), 8–13 (2011)
 DOI: 10.1002/pst.483
- Garcia-Arieta A and J Gordon
 Bioequivalence Requirements in the European Union: Critical Discussion
 DOI: 10.1208/s12248-012-9382-1
- BM Davit
 Sequential Designs and Interim Analyses in Bioequivalence: FDA’s Experience
 AAPS Annual Meeting, Chicago, IL, October 13–18, 2012
- A Fuglsang
 Sequential Bioequivalence Trial Designs with Increased Power and Controlled Type I Error Rates
 DOI: 10.1208/s12248-013-9475-5
- Karalis V and P Macheras
 An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies
 DOI: 10.1007/s11095-013-1026-3
- A Fuglsang
 Futility Rules in Bioequivalence Trials with Sequential Designs
 AAPS J 16(19), 79–82 (2014)
 DOI: 10.1208/s12248-013-9540-0
- A Fuglsang
 Sequential Bioequivalence Approaches for Parallel Designs
 AAPS J, Epub ahead of print (Feb 2014)
 DOI: 10.1208/s12248-014-9571-1