1

Reference-scaling and Control of the Type I Error

Helmut Schütz

2nd Annual Biosimilars Forum Satellite Short Course | Budapest, 5 October 2017

Study Designs

The more 'sophisticated' a design is, the more information can be extracted.

- Hierarchy of designs: Full replicate (RTRT | TRTR or RTR | TRT) → Partial replicate (RRT | RTR | TRR) → 2×2×2 crossover (RT | TR) → Parallel (R | T)
- Variances which can be estimated:
 - Parallel: 2×2×2 crossover: Partial replicate: Full replicate:
- total variance (between + within subjects)
 - $2 \times 2 \times 2$ crossover: + between, within subjects \pounds
 - + within subjects (of R) 🖈
 - + within subjects (of R and T) 🖈

DAC

Assumptions

All models rely on assumptions

- Bioequivalence as a surrogate for therapeutic equivalance.
 - Studies in healthy volunteers in order to minimize variability (*i.e.*, lower sample sizes than in patients).
 - Current emphasis on *in vivo* release ('human dissolution apparatus').
- Concentrations in the sample matrix reflect concentrations at the target receptor site.
 - In the strict sense only valid in steady state.
 - In vivo similarity in healthy volunteers can be extrapolated to the patient population(s).
- $f = \mu_T / \mu_R$ assumes that
 - $D_T = D_R$ and
 - inter-occasion clearances are constant.

Assumptions

All models rely on assumptions

• Log-transformation allows for additive effects required in ANOVA.

DAC

- No carry-over effect in the model of crossover studies.
 - Cannot be statistically adjusted.
 - Has to be avoided by design (suitable washout).
 - Shown to be a statistical artifact in meta-studies.
 - Exception: Endogenous compounds (biosimilars!)
- Between- and within-subject errors are independently and normally distributed about unity with variances σ_s^2 and $\sigma_{e^*}^2$.
 - If the reference formulation shows higher variability than the test, the 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - No monocygotic twins or triplets in the study!

Assumptions

High variability can be

- an intrinsic property of the drug itself (low absorption and/or inter-occasion clearance) and/or
- attributed to the product's performance.
 - Physiology (enteric coated formulations and gastric emptying).
 - Absorption: rate of drug release and absorption window.
 - Influence of excipients
 - on gastric motility and/or
 - on transporters.

HVDP

HVD

Highly Variable Drugs / Drug Products

Counterintuitive concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low, but not BE – even if the difference is quite small – due to high variability.

Modified from Tothfálusi *et al.* (2009), Fig. 1

Highly Variable Drugs / Drug Products

It may be almost impossible to demonstrate BE of HVD(P)s with a reasonable sample size

- Since HVD(P)s are safe and efficacious some jurisdictions accept a larger 'not clinically relevant' difference
 - The BE limits can be *scaled* based on the variability of the reference.

HVD(P)s – Reference-scaling

It may be almost impossible to demonstrate BE with a reasonable sample size

- Reference-scaling (*i.e.*, widening the acceptance range based of the variability of the reference) in 2010 introduced by the FDA and EMA and in 2016 by Health Canada.
 - Requires a replicate design, where at least the reference product is administered twice.
 - Smaller sample sizes compared to the standard 2×2×2 design but outweighed by increased number of periods.
 - Similar total number of individual treatments.
 - Any replicate design can be evaluated for 'classical' (unscaled) Average Bioequivalence (ABE) as well. Switching CV_{wR} 30%:
 - FDA: AUC and C_{max}
 - EMA: C_{max} ; MR products additionally: $C_{ss,min}$, $C_{ss,r}$, partial AUCs

8

– Health Canada: AUC

Models (in log-scale)

- ABE Model:
 - A difference \triangle of \leq 20% is considered to be clinically not relevant.
 - The limits [L, U] of the acceptance range are fixed to $log(1 \Delta) = log((1 \Delta)^{-1})$ or L ~ -0.2231 and U ~ +0.2231.
 - The consumer risk is fixed with 0.05. BE is concluded if the $100(1 2\alpha)$ confidence interval lies entirely within the acceptance range.

 $-\theta_{A} \leq \mu_{T} - \mu_{R} \leq +\theta_{A}$

- SABEL Model:
 - Switching condition θ_{s} is derived from the regulatory standardized variation σ_{0} (proportionality between acceptance limits in log-scale and σ_{wR} in the highly variable region).

$$-\theta_{s} \leq \frac{\mu_{T} - \mu_{R}}{\sigma_{wR}} \leq +\theta_{s}$$

Regulatory Approaches

• Bioequivalence limits derived from σ_0 and σ_{wR}

$$\theta_{s} = \frac{\log(1.25)}{\sigma_{0}}, \ [L,U] = e^{\pm\theta_{S}\cdot\sigma_{WR}}$$

- FDA
 - − Scaling σ_{wR} 0.25 (θ_{s} 0.893) but applicable at $CV_{wR} \ge 30\%$.
 - Discontinuity at CV_{wR} 30%.
- EMA
 - Scaling σ_0 0.2936 ($\theta_{\rm S}$ 0.760).
 - Upper cap at CV_{wR} 50%.
- Health Canada
 - Like EMA but upper cap at CV_{wR} 57.4%.

Regulatory Approaches

- Scaled limits based on variability of the reference
 - EMA: IR C_{max} only; MR (additionally $C_{max,ss}$, $C_{min,ss}$, $C_{r,ss}$, partial AUCs)

- FDA: C_{max} and AUC
- HC: AUC only

	EMA	FDA			НС	
CV _{wR}	BE limits (%)	CV _{wR}	BE limits (%)	CV _{wR}	BE limits (%)	
≤30	80.00 - 125.00	≤30	80.00 - 125.00	≤30	80.00 - 125.00	
35	77.23 – 129.48	35	73.83 – 135.45	35	77.23 – 129.48	
40	74.62 – 134.02	40	70.90 – 141.04	40	74.62 - 143.02	
45	72.15 – 138.59	45	68.16 - 146.71	45	72.15 – 138.59	
≥50	69.84 - 143.19	50	65.60 - 152.45	50	69.84 - 143.19	
		60	60.96 - 164.04	≥57.4	66.67 – 150.00	
		80	53.38 - 187.35			
		100	47.56 - 210.25			

The EMA's Approach

- Average Bioequivalence with Expanding Limits ABEL (crippled from Endrényi and Tóthfalusi 2009).
 - Justification that the widened acceptance range is clinically not relevant (important – different to the FDA).
 - Assumes identical variances of T and R [*sic*] like in a 2×2×2.
 - All fixed effects model according to the Q&A-document preferred.
 - Mixed-effects model (allowing for unequival variances) is 'not compatible with CHMP guideline'...
 - Scaling limited at a maximum of CV_{wR} 50% (*i.e.*, to 69.84 143.19%).
 - *GMR* within 80.00 125.00%.
 - Demonstration that CV_{wR} >30% is not caused by outliers (box plots of studentized intra-subject residuals?)...
 - \geq 12 subjects in sequence RTR of the 3-period full replicate design.

The EMA's Approach

- Pitfalls and suggestions
 - The applicant should justify that the calculated intra-subject variability is a reliable estimate and that it is not the result of outliers.
 - EMA Q&A-document (Rev. 7, March 2011), Data set I: RTRT | TRTR full replicate, 77 subjects, unbalanced, incomplete.
 - CV_{wR} 46.96% \rightarrow apply ABEL (>30%)
 - Scaled acceptance range: 71.23 140.40%.
 - Method A: 90% CI 107.11 124.89% ⊂ AR; PE 115.66% ⊂ 80.00 125.00%.
 - Method B: 90% CI 107.17 124.97% ⊂ AR; PE 115.73% ⊂ 80.00 125.00%.
 - But there *are* two severe outliers!
 By excluding subjects 45 and 52, the CV_{wR} drops to 32.16%.
 - New scaled acceptance range: 78.79 126.93%.
 Almost no more gain compared to the conventional ABE limits.
 - Outliers have to be only excluded for the calculation of CV_{wR} but kept for the calculation of the Cl.

13

ABEL prove

The EMA's Approach

- Pitfalls and suggestions
 - Incomplete data (missing periods).
 - Even if one has no data of T (e.g., a subject dropped out after the second period in sequence RRT) do not exclude the subject from the calculation of CV_{wR} . The estimate will be more accurate.
 - Must be unambigously stated in the protocol. Example for the partial replicate design (RRT|RTR|TRR):
 - » Data set for the estimation of CV_{wR} : All subjects with two administrations of R regardless of any other missing periods.
 - » Data set for the calculation of the CI: All subjects with at least one administration of T and at least one administration of R.

The EMA's Approach

- Pitfalls and suggestions
 - — ≥12 subjects in sequence RTR of the 3-period full replicate design (Q&A-document, Rev. 12 June 2015)
 - − With sample sizes for the commonly applied T/R-ratio of 0.90 for HVD(P)s and \geq 80% power this issue is practically not relevant.
 - Would affect only studies with extreme dropout-rates (>42%)!

<i>CV_{wR}</i> (%)	Ν	n _{rtr}	max. dropout-rate (%)
25	42	21	42.9
30	50	25	52.0
40	40	20	47.8
50	42	21	42.9
60	48	24	50.0
70	60	30	60.0
80	74	37	67.6

The EMA's Approach

- Decision Scheme.
 - The Null Hypothesis is *specified* in the face of the data.
 - Acceptance limits themselves become random variables.
 - Type I Error (consumer risk) might be inflated.

2rd Annual Biosimilars Forum

Satellite Short Course | Budapest, 5 October 2017

16

DAG

Assessing the Type I Error (TIE)

- TIE = falsely concluding BE at the limits of the acceptance range. In ABE the TIE is ≤0.05 at 0.80 and ≤0.05 at 1.25.
- Due to the decision scheme no direct calculation of the TIE at the scaled limits is possible;
 - \rightarrow extensive simulations required (10⁶ BE studies mandatory).
- Inflation of the TIE suspected. (Chow *et al.* 2002, Willavazie & Morgenthien 2006, Chow & Liu 2009, Patterson & Jones 2012).
- Confirmed.
 - EMA's ABEL: Tóthfalusi & Endrényi 2009, 2017, BEBA-Forum 2013, Wonnemann *et al.* 2015, Muñoz *et al.* 2016, Labes & Schütz 2016, Molins *et al.* 2017.
 - FDA's RSABE: Tóthfalusi & Endrényi 2009, BEBA-Forum 2013, Muñoz *et al.* 2016.

DAC

Example for ABEL

- RTRT | TRTR sample size 18 – 96 *CV_{wR}* 20% – 60%
 - TIE_{max} 0.0837.
 - Relative increase of the consumer risk 67%!

What is going on here?

• SABE is stated in model parameters ...

$$-\theta_{S} \leq \frac{\mu_{T} - \mu_{R}}{\sigma_{WR}} \leq +\theta_{S}$$

... which are unknown.

- Only their estimates (GMR, s_{wR}) are accessible in the actual study.
- At CV_{wR} 30% the decision to scale will be wrong in ~50% of cases.
- If moving away from 30% the chances of a wrong decision decrease and hence, the TIE.
- At high CVs (>43%) both the scaling cap and the GMR-restriction help to maintain the TIE <0.05).

Outlook

- Utopia
 - Agencies collect CV_{wR} from submitted studies. Pool them, adjust for designs / degrees of freedom. The EMA publishes a fixed acceptance range in the product-specific guidance. No need for replicate studies any more. 2×2×2 crossovers evaluated by ABE would be sufficient.
- Halfbaked
 - Hope [*sic*] that *e.g.*, Bonferroni preserves the consumer risk. Still apply ABEL, but with a 95% CI (α 0.025).
 - Drawback: Loss of power, substantial increase in sample sizes.
- Proposal
 - Iteratively adjust α based on the study's CV_{wR} and sample size in such a way that the consumer risk is preserved (Labes & Schütz 2016, Molins *et al.* 2017).

DAC

ABEL (iteratively adjusted α)

Previous example

- Algorithm
 - Assess the TIE for the nominal α 0.05.
 - If the TIE \leq 0.05, stop.
 - Otherwise adjust α (downwards) until the TIE = 0.05.
 - At CV_{wR} 30% (dependent on the sample size) α_{adj} is 0.0273 - 0.0300; \rightarrow use a 94.00 - 94.54% Cl.

ABEL (iteratively adjusted α)

Potential impact on the sample size

- **Example:** RTRT | TRTR, θ_0 0.90, target power 0.80.
 - Moderate in the critical region (— —).
 - CV_{wR} 30%: 36 \rightarrow 42 (+17%);
 - CV_{wR} 35%: 34 \rightarrow 38 (+12%);
 - CV_{wR} 40%: 30 \rightarrow 32 (+7%).
 - None outside (—).

ABEL (iteratively adjusted α)

Example (RTRT | TRTR, expected CV_{wR} 35%, θ_0 0.90, target power 0.80); R package PowerTOST (\geq 1.3-3).

• Estimate the sample size.

[1] 34

• Estimate the empiric TIE for this study.

```
UL <- scABEL(CV=0.35)[["upper"]] # scaled limit (1.2948 for CVwR 0.35)
power.scABEL(CV=0.35, theta0=UL, n=34, design="2x2x4", nsims=1e6)
[1] 0.065566</pre>
```

• Iteratively adjust α.

```
CVwR 0.35, n(i) 17|17 (N 34)Nominal alpha: 0.05Null (true) ratio: 0.9000Regulatory settings: EMA (ABEL)Empiric TIE for alpha 0.0500: 0.06557Power for theta0 0.900: 0.812Iteratively adjusted alpha: 0.03630Empiric TIE for adjusted alpha:0.05000Power for theta0 0.900: 0.773
```

I

DAC

ABEL (iteratively adjusted α)

 Optionally compensate for the loss in power (0.812 → 0.773) by increasing the sample size:

sampleN.scABEL.ad(CV=0.35, theta0=0.90, targetpower=0.80, design="2x2x4") Sample size estimation for iteratively adjusted alpha Study design: 2x2x4 (RTRT|TRTR) Expected CVwR 0.35 Nominal alpha : 0.05 Null (true) ratio : 0.9000 Target power : 0.8 Regulatory settings: EMA (ABEL) Switching CVwR : 30% Regulatory constant: 0.760 Expanded limits : 0.7723...1.2948 Upper scaling cap : CVwR 0.5 PE constraints : 0.8000...1.2500 n 38, adj. alpha: 0.03610 (power 0.8100), TIE: 0.05000 - n 34 \rightarrow 38 (+12%), power 0.773 \rightarrow 0.810, α_{adi} 0.0363 \rightarrow 0.0361.

Excursion 2

'Side effect' of allowing ABEL only for C_{max}

- Some drugs show high variability in AUC as well.
 - Since in such a case the sample size will be mandated by *AUC*, products with high deviations in C_{max} will be approved.
 - Example: CV_{wR} 90% (C_{max}), 60% (AUC), θ_0 0.90, target power 80% \rightarrow the study is 'overpowered' for C_{max} ; C_{max} -GMRs of [0.846–1.183] will pass BE. Really desirable?
 - With the FDA's RSABE the study could be performed in only 34 subjects...

25

And on the other side of the pond?

Example for the FDA's RSABE

- RTRT | TRTR sample size 18 – 96 CV_{wR} 20% – 60%
 - TIE_{max} 0.2245.
 - Relative increase of the consumer risk 349%!
 - TIE more dependent on the sample size than in ABEL.
 - However, no inflation of the TIE for CV_{wR}>30%; RSABE is very conservative for 'true' HVD(P)s.

And on the other side of the pond?

FDA's desired consumer risk model (Davit et al. 2012)

- Previous example
 - TIE assessed not at the scaled limits but
 - at 1.25 if CV_{wR} ≤25.4%
 or
 - at $e^{0.893 \cdot \sigma_{WR}}$ otherwise.
 - TIE_{max} 0.0668.
 - Lászlo Endrényi: "Hocus pocus!"

Reference-scaling and Control of the Type I Error

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>