

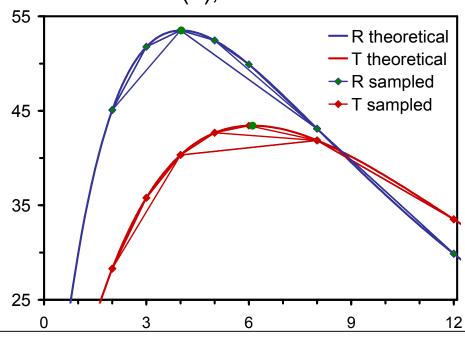
PK-based Design, Sample Size Considerations

NCA vs. PK Modeling in BE

Pharmacokinetic Models

- Very useful for understanding the drug and formulation
 - Study design of BA/BE
 - Length of sampling (AUC_{0-t} should cover ≥80% of $AUC_{0-\infty}$) and washout (no residual concentrations from earlier periods)
 - Degree of accumulation / number and of doses / dosing interval to reach steady state

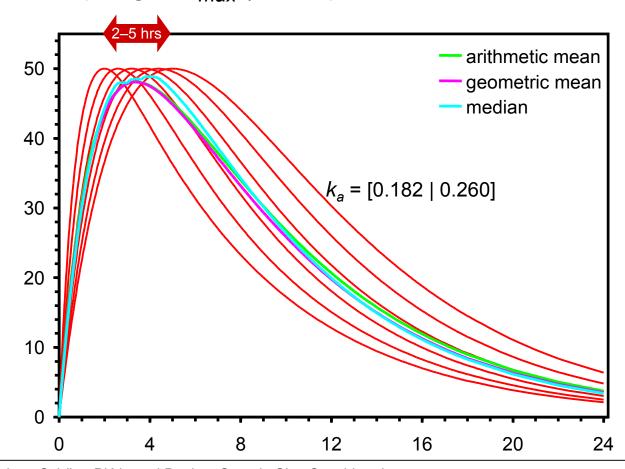
Drawbacks

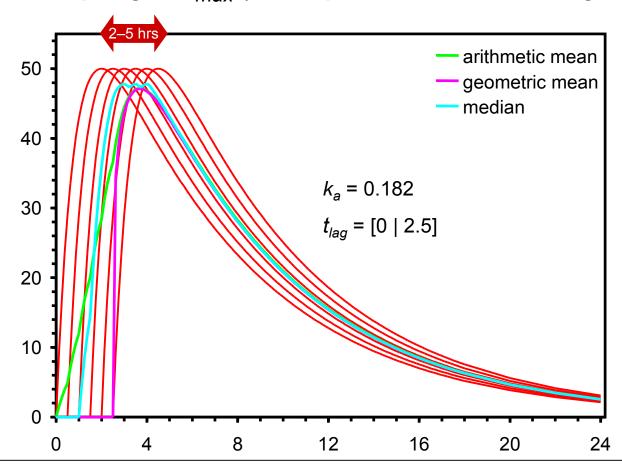

- Difficult to validate (fine-tuning of side conditions, weighting schemes, software's algorithms, ...)
- Still a mixture of art and science
- Practically impossible to recalculate any given data set using different software – sometimes even with different versions of the same software
- Not acceptable for evaluation of BA/BE studies!

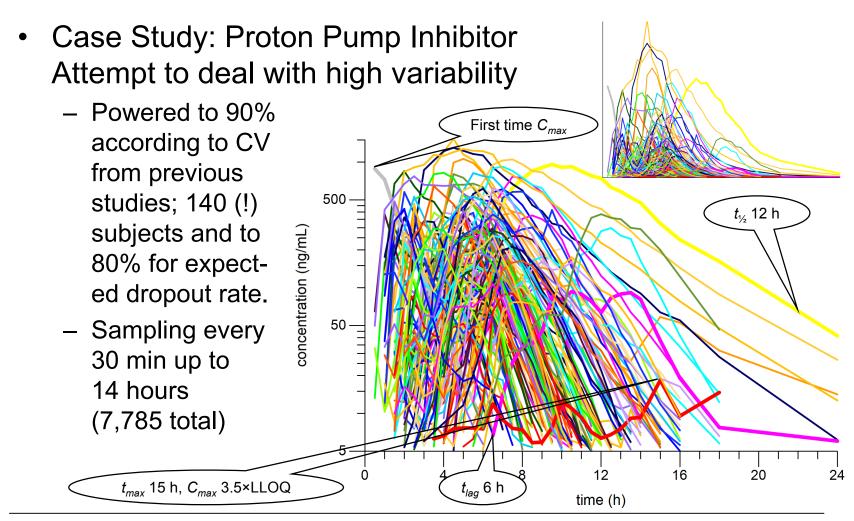
NCA vs. PK Modeling in BE

- Nonparametric Superposition is an alternative
 - Designing multiple dose studies based on single dose data
 - Concentrations of a single dose study are stacked according to the desired dosing interval while adding the time course of eliminated concentrations of previous doses (Dost 1953)
 - Limitations
 - Linear PK has to be assumed
 - Requires reliable estimate of λ_z
 - Equal doses
 - Equal dosing intervals
 - Implemented in Phoenix/WinNonlin, Kinetica, ThothPro
 - With experience and patience possible in any spreadsheet and statistical software (SAS, R, MATLAB, ...)

- Sampling at t_{max}
 - With any sampling scheme the 'true' C_{max} is missed (one cannot sample exactly at the true C_{max} for any given subject)
 - High inter- and/or intra-subject variability (single point metric)
 - Variability higher than the one of AUC
 - In many studies the win/loose metric!
 - Remedies
 - Sample size based on the variability of C_{max} never of AUC
 - Sufficient numer of samples in the area of the expected t_{max}


- Sampling at t_{max}
 - Theoretical values (from PK simulation) C_{max} 41.9 (T) / 53.5 (R), T/R 81.2% t_{max} 6.11 (T) / 4.02 (R), Δ 2.09
 - Number of samples within 2 12 hours (n), estimated T/R-ratio for C_{max} and for Δt_{max} 55
 - n = 4 78.3%, 4
 - n = 5 78.3%, 4
 - n = 6 79.8%, 1
 - n = 7 81.2%, 2


- Sampling at t_{max}
 - Quote from the literature:


 'Maximum concentrations were observed within two to five hours after oral administration.'
 - Elimination is drug specific,
 - but what about absorption?
 - Formulation specific!
 - Dependent on the sampling schedule (therefore, in a strict sense study-specific)

• Sampling at t_{max} (absorption rate variable, no lag times)

• Sampling at t_{max} (absorption rate const., lag time variable)

Recap

- Minimum sample size generally 12
- Maximum not specified in GLs; high ones ethically problematic
- Recommended power (chance to pass) 80 90%
- ICH E9, Section 3.5

The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed.

- Power vs. Sample Size
 - It is not possible to directly obtain the required sample size
 - The required sample size depends on *five* values, namely
 - the acceptance range (AR) for bioequivalence;
 - the error variance (s²) associated with the PK metrics as estimated from
 - » previous studies, a pilot study, or published data;
 - the fixed significance level (α);
 - the expected deviation (Δ) from the reference product and;
 - the desired power (1β) .
 - Three values are known and fixed (AR, α , 1 β), one is an estimate (s^2), and one an assumption (Δ)
 - Hence, the correct term is 'sample size estimation' and not 'sample size calculation'

- Power vs. Sample Size
 - Only power is accessible
 - The sample size is searched in an iterative procedure until at least the desired power is obtained Example: α 0.05, AR 80 125%,

target power 80% (β 0.2), assumed *GMR* 0.95, CV_{intra} 20% \rightarrow minimum sample size 19 (power 81.3%),

rounded up to the next even number in

a 2×2×2 study (power 83.5%)

_	n	power (%)
	16	73.5
	17	76.4
	18	79.1
	19	81.3
	20	83.5
_		<u>-</u>

- Exact methods for ABE in parallel, crossover, and replicate designs are available
- Simulations recommended for Group-Sequential and Two-Stage Designs
- Simulations mandatory for reference-scaling methods

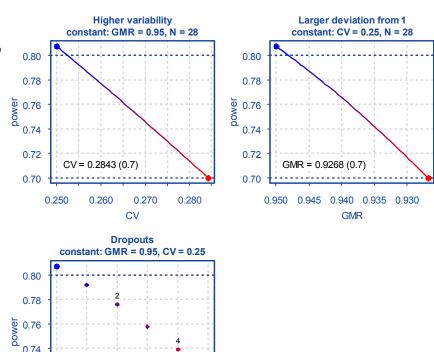
- Power vs. Sample Size
 - Can be performed in the open-source package
 PowerTOST * for R
 - Examples (after library(PowerTOST))
 - CV 40%, GMR 0.95%, power 80%, parallel design sampleN.TOST(CV=0.40, theta0=0.95, targetpower=0.80, design="parallel")[["Sample size"]] [1] 130
 - CV 20% GMR 0.95%, power 80%, 2×2×2 crossover design sampleN.TOST(CV=0.20, theta0=0.95, targetpower=0.80, design="2x2x2")[["Sample size"]] [1] 20
 - CV 50% GMR 0.90%, power 80%, 2×2×4 full replicate design for the EMA'/WHO' reference-scaling of HVD(P)s sampleN.scabel(CV=0.50, theta0=0.90, targetpower=0.80, design="2x2x4")[["Sample size"]] [11] 28

^{*} Labes D, Schütz H, Lang B. *PowerTOST: Power and Sample Size Based on Two One-Sided t-tests (TOST) for (Bio)Equivalence Studies*. 2018; R package version 1.4.9. https://cran.r-project.org/package=PowerTOST.

- Power vs. Sample Size
 - Examples (cont'd)
 - CV 50% GMR 0.90%, power 80%, 2×2×4 full replicate design for the FDA's reference-scaling of HVD(P)s sampleN.RSABE(CV=0.50, theta0=0.90, targetpower=0.80, design="2x2x4")[["Sample size"]] [1] 28
 - CV 10% GMR 0.975%, power 80%, 2×2×2 crossover design for the EMA/WHO - narrower limits for NITIDs sampleN.TOST(CV=0.10, theta0=0.975, targetpower=0.80, design="2x2x2", theta1=0.90, theta2=1/0.90)[["Sample size"]] [1] 22
 - CV 10% GMR 0.975%, power 80%, 2×2×4 full replicate design for the FDA's reference-scaling of NTIDs sampleN.NTIDFDA(CV=0.10, theta0=0.975, targetpower=0.80, design="2x2x4")[["Sample size"]] [1] 18

- Power vs. Sample Size
 - However, all results are based on assumptions
 - ICH E9 recommends a sensitivity analysis to explore the impact on power if values deviate from assumptions

- Power vs. Sample Size
 - Example ABE, 2×2×2 Design
 - Assumed *GMR* 0.95, α 0.05, AR 80–125%, CV_{intra} 0.25 (25%) desired power 80%, min. acceptable power 70%
 - Sample size 28 (power 0.807)
 - CV_{intra} ↑ 0.284 (rel. +14%)
 - $GMR \downarrow 0.927 \text{ (rel. } -2.4\%)$
 - 5 drop-outs acceptable (rel. –18%)
 - Most critical is the GMR


0.72

0.70

N = 23 (0.7173)

26

25

23

24

- Dealing with Uncertainty
 - One should never assume perfectly matching products
 - Recommended ∆

```
    Conventional ABE Not better than 5% (GMR 0.9500 – 1.0526)
```

• HVD(P)s Not better than 10% (*GMR* 0.9000 – 1.1111)

• NTIDs Not better than 2.5% (*GMR* 0.9750 – 1.0256)

- The CV from previous studies, a pilot study, or the literature is not 'carved in stone'
 - Don't use the value as it is but its (upper) confidence limit
 - As usual, the confidence interval narrows with increasing sample size
 - The larger a previous study was, the more accurate the estimated CV
 - Very small pilot studies are practically useless for the estimation of the CV
 - Example: CL of CV 25% estimated from a study with n subjects 39.8% (n = 6), 32.1% (n = 12), 30.6% (n = 18)

Ethical Issues

- 'Demonstrating BE' in Pilot Study
 - The purpose of a pilot study (amongst others) is to obtain estimates of the *GMR* and *CV* which can be used to design the pivotal study
 - In a strict sense it is not possible to demonstrate bioequivalence in a pilot study which is – by definition – exploratory
 - Acceptable
 - FDA (if at least 12 subjects and properly performed)
 - In the past some agencies (Scandinavian countries, Germany)
 accepted pilot studies as evidence of BE if stated in the protocol
 - Repeating a 'passing' pilot (even in a larger sample size)
 may fail by pure chance (producer's risk = 1 power)
 - » Hence, this approach was considered unethical
 - Nowadays, European regulatory agencies are seemingly more strict (follow the 'cook book')