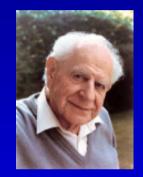


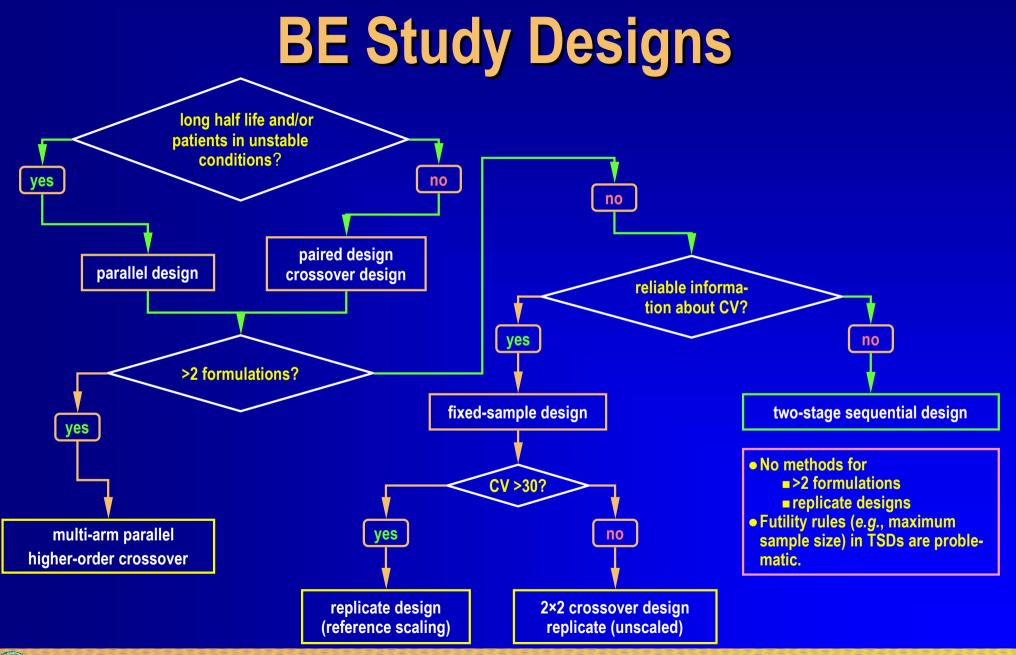
Wikimedia Commons • 2013 Pawel "pbm" Szubert • Creative Commons Attribution-ShareAlike 3.0 Unported


5th Scientific Conference "Clinical Trials in Ukraine" Kiev, 19 November 2015

To bear in Remembrance...

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.

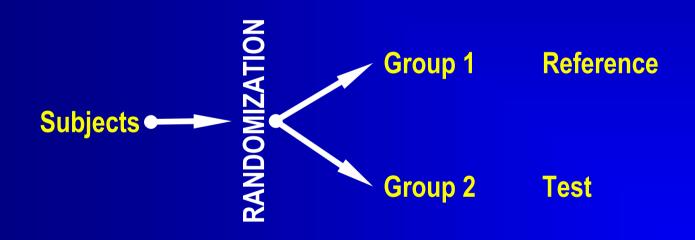
Even though it's *applied* science we're dealin' with, it still is – science!


Karl R. Popper

Leslie Z. Benet

BE Study Designs

•The more 'sophisticated' a design is, the more information can be extracted. Hierarchy of designs: Full replicate (TRTR | RTRT or TRT | RTR) → $2 \times 2 \times 2$ crossover (TR | RT) \Rightarrow Parallel (R | T) Variances which can be estimated: total variance (between + within subjects) Parallel: $2 \times 2 \times 2$ Xover: + between, within subjects \cancel{P} Partial replicate: + within subjects (reference) 🕩 + within subjects (reference, test) *3* **Full replicate:**



Information

Parallel Designs

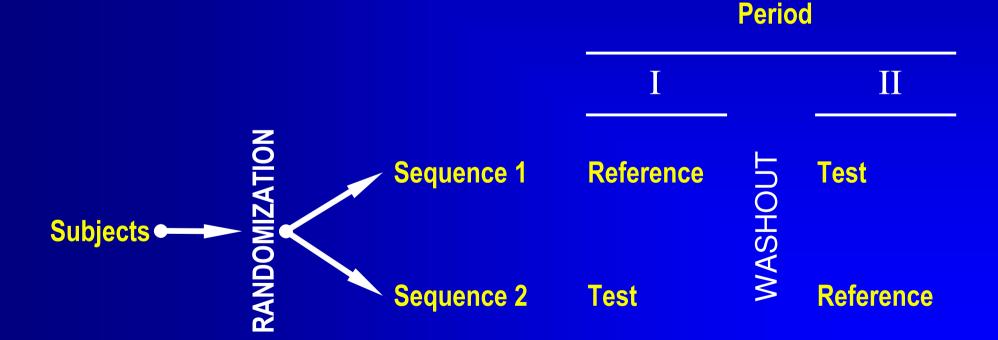
•Two-Group Parallel Design

Parallel Designs (cont'd)

•Two-Group Parallel Design

Advantages

- Clinical part sometimes faster than crossover.
- Straigthforward statistical analysis.
- Drugs with long half life.
- Potentially toxic drugs or effect and/or AEs unacceptable in healthy subjects.
- Studies in patients, where the condition of the disease irreversibly changes.


Disadvantages

- Lower statistical power than crossover high sample sizes.
- Tight inclusion-/exclusion criteria to reduce between-subject variability.
- Phenotyping mandatory for drugs showing polymorphism.

Crossover Designs

Standard 2×2×2 Design (Two Treatments, Two Periods, Two Sequences)

Crossover Designs: Model

Multiplicative Model (without carryover) $\ln (X_{ijk}) = \ln (\mu) + \ln (\pi_k) + \ln (\Phi_l) + \ln (s_{ik}) + \ln (e_{ijk})$ $X_{iik} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{iik}$

 X_{ijk} : response of *j*-th subject (*j*=1,...,*n_i*) in *i*-th sequence (*i*=1,2) and *k*-th period (*k*=1,2), μ : global mean, μ_l : expected formulation means (*l*=1,2: $\mu_1=\mu_{test}, \mu_2=\mu_{ref.}$), π_k : fixed period effects, Φ_l : fixed formulation effects (*l*=1,2: $\Phi_1=\Phi_{test}, \Phi_2=\Phi_{ref.}$)

Crossover Designs: Assumptions

Multiplicative Model (without carryover)

$$X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$$

• All $ln\{s_{ik}\}$ and $ln\{e_{ijk}\}$ are independently and normally distributed about unity with variances σ_s^2 and σ_e^2 .

- This assumption may not hold true for all formulations; if the reference formulation shows higher variability than the test formulation, a 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - This assumption should not be a problem, unless you plan to include twins or triplets in your study...

Standard 2×2×2 design

- Advantages
 - Globally applied standard protocol for bioequivalence, drug-drug interaction, food effect studies.
 - Straigthforward statistical analysis.
- Disadvantages
 - Not suitable for studies in patients with instable diseases → parallel design
 - Not optimal for drugs with long half life
 - \rightarrow parallel design
 - Not optimal for highly variable drugs / drug products
 - \rightarrow replicate designs with reference-scaling

Higher Order Designs (for more than two treatments)

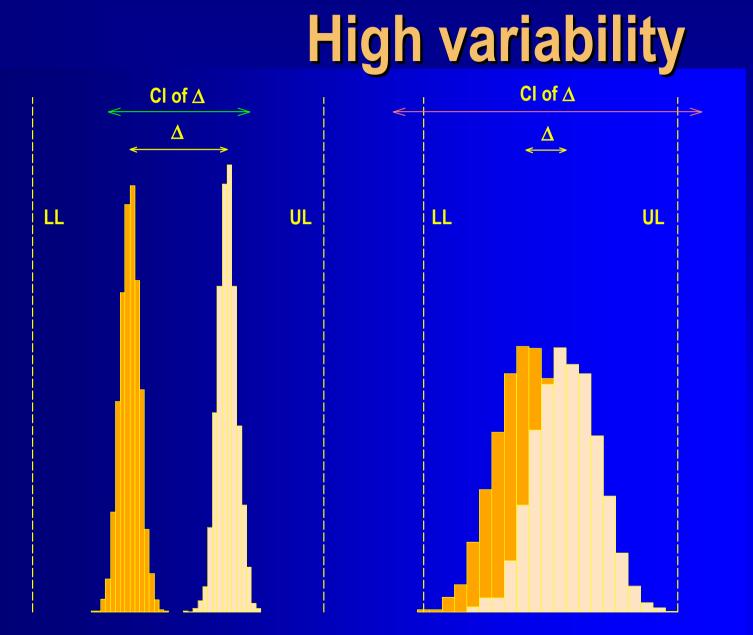
Variance Balanced Designs (Williams' Designs)

- For e.g., three formulations there are three possible pairwise differences among formulation means (*i.e.*, form. 1 vs. form. 2., form 2 vs. form. 3, and form. 1 vs. form. 3).
- It is desirable to estimate these pairwise effects with the same degree of precision (there is a common variance for each pair).
 - Each formulation occurs only once with each subject.
 - Each formulation occurs the same number of times in each period.
 - The number of subjects who receive formulation *i* in some period followed by formulation *j* in the next period is the same for all *i* # *j*.

•Williams' Design for three treatments

Sequence -		Period	
	Ι	III	III
1	R	T ₂	T ₁
2	T ₁	R	T ₂
3	T ₂	T ₁	R
4	T ₁	T ₂	R
5	T ₂	R	T ₁
6	R	T ₁	T ₂

•Williams' Designs


- Advantages
 - Allows to choose between two candidate test formulations or comparison of a test formulation with two references.
 - Standard design for establishment of dose proportionality.
 - Paired comparisons are balanced.
 - Mentioned in EMA's and ANVISA's guidelines.

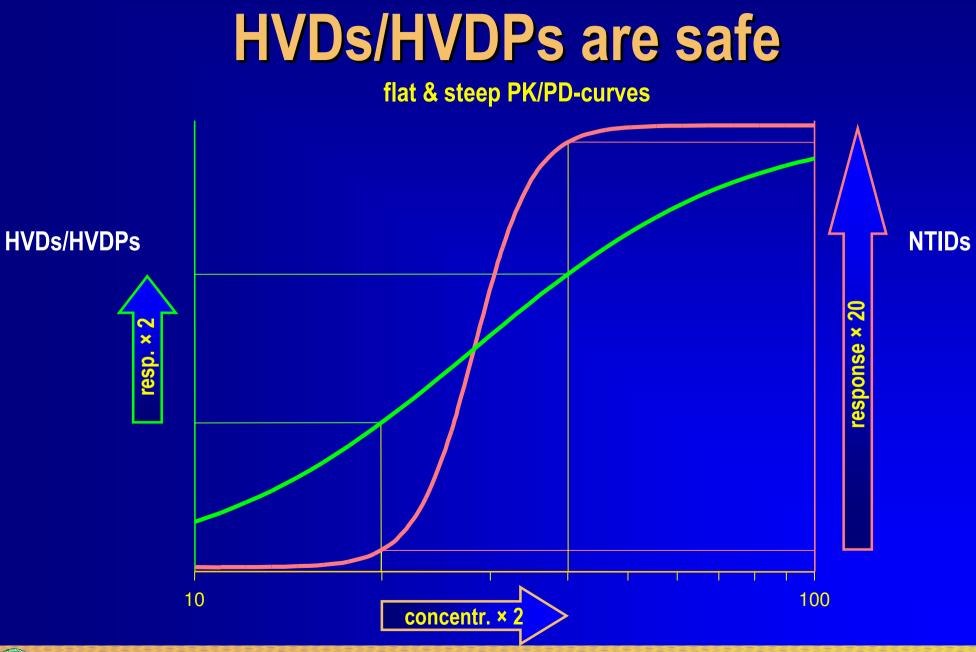
Disadvantages

- More sequences for an odd number of treatment needed than in a Latin Squares design (but equal for even number).
- Statistical analysis more complicated not available in all software.
- May need measures against multiplicity (increasing the sample size).

Modified from Fig. 1 Tothfálusi *et al.* (2009)

Counterintuitive concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low, but not bioequivalent – even if the difference is quite small – due to high variability.



High variability

- For Highly Variable Drugs / Drug Products (HVDs/HVDPs) it may be almost impossible to show BE with a reasonable sample size.
 - The common 2×2×2 crossover design assumes Independent Identically Distributions (IID) – which may not be correct.
 - If the variability of the reference is higher than the one of the test, one obtains a high common (pooled) variance and the test will be penalized for the 'bad' reference.

Replicate Designs

- Each subject is randomly assigned to sequences, where at least one of the treatments (generally the reference) is administered at least twice.
 - Not only the global within-subject variability, but also the within-subject variability per treatment may be estimated.
 - Smaller subject numbers compared to a standard 2×2×2 design – but outweighed by an increased number of periods.
 - Same overall number of individual treatments (study costs directly related to number of biosamples)!

Replicate Designs

- Any replicate design can be evaluated for 'classical' (unscaled) Average Bioequivalence (ABE) as well.
- Mandatory if scaling not allowed.
 - FDA: s_{WR} <0.294 (CV_{WR} <30%); different models dependend on design (*i.e.*, SAS Proc MIXED for full replicate and Proc GLM for partial replicate).
 - EMA: $CV_{WR} \leq 30\%$; all fixed effects model according to 2011's Q&A-document preferred (e.g., SAS Proc GLM).
 - Even if scaling is not intended or applicable, replicate designs give more information about formulation(s).

Application: HVDs/HVDPs

•Within-subject CV of the reference (CV_{WR}) >30 %

- ✓ USA Recommended in API specific guidances. Scaling for AUC and/or C_{max} acceptable, GMR 0.80 – 1.25; ≥24 subjects enrolled.
- **±** EU Widening of acceptance range (only C_{max}) to a maximum of 69.84 143.19%), GMR 0.80 1.25. Demonstration that CV_{WR} >30% is not caused by outliers (box plots). Justification that the widened acceptance range is clinically not relevant (safety, efficacy). Not less than 12 subjects in sequence RTR.

Replicate Designs

Two-sequence four-period TRTR | RTRT Two-sequence three-period TRT | RTR •and many others... (FDA: TRR | RTR | RRT, aka 'partial replicate') The statistical model is complicated and depends on the actual design!

$$X_{ijkl} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ij} \cdot e_{ijkl}$$

HVDPs (EMA)

•EU GL on BE (2010)

- ■Average Bioequivalence (AB) with Expanding Limits (EL) → "ABEL"
 - Based on σ_{WR} (the *intra*-subject standard deviation of the reference formulation) calculate the scaled acceptance range based on the regulatory constant k ($\theta_s = 0.760$); limited at CV_{WR} 50%.

$$[L-U] = e^{\pm k \cdot \sigma_{WR}}$$

CV_{WR} (%)	L - U
≤30	80.00 - 125.00
35	77.23 – 129.48
40	74.62 – 143.02
45	72.15 – 138.59
≥50	<u> 69.84 – 143.19</u>

Patients' Risk?

The Null-Hypothesis is modified 'in face of the data'

- The acceptance range is not pre-specified (like in conventional ABE), but depends on the variability observed in the study.
 - Modifying H_0 generally requires adjustment of α in order to maintain the Type I Error ≤5%.
 - Inflation of the Type I Error known.^{1,2}
 - Recommendation: Use an adjusted α of 0.025 (95% CI) for full replicate designs and α of 0.030 (94% CI) for the partial replicate design.
 - 1. Endrényi L, Tóthfalusi (2009) Regulatory Conditions for the Determination of Bioequivalence of Highly Variable Drugs J Pharm Pharmaceut Sci 12(1):138–49
 - 2. Wonnemann M, Frömke C, Koch A (2015) Inflation of the Type I Error: Investigations on Regulatory Recommendations for Bioequivalence of Highly Variable Drugs Pharm Res 32(1):135–43 DOI: 10.1007/s11095-014-1450-z

Add-On / Two-Stage Designs

Sometimes properly designed studies fail due to

- 'true' bioinequivalence,
- pure chance (producer's risk),
- poor study conduct (increasing variability),
- false (mainly over-optimistic) assumptions about the CV and/or T/R-ratio – leading to a too small sample size (insufficient power).

•Reminder:

The chosen sample size is based on assumptions...

Add-On / Two-Stage Designs

 Dealing with inconclusive BE studies (confidence) interval not entirely with the acceptance range) Repeat the study in a larger sample size. Perform a meta-analysis of more than one study. Only acceptable if at least one study demonstrates BE. Recruit additional subjects and pool data. Problematic! Discussed at Bio-International Conferences (1989, 1992) and guidelines of the 1990s. The patient's risk must be preserved! Among rivaling methods the one with with the highest power should be selected.

Adaptive TS Sequential Designs

•Two 'Types' of Two-Stage Sequential Designs¹

- 1. The same adjusted α is applied in both stages (regardless whether a study stops already in the first stage or proceeds to the second stage).
 - Based on Group Sequential Designs.
 - In publications called 'Method B'.
- 2. An unadjusted α may be used in the first stage (dependent on interim power).
 - Based on conventional BE testing + GSD.
 - In publications called 'Method C, D, or C/D'.
- 1. Schütz H (2015) Two-stage designs in bioequivalence trials Eur J Clin Pharmacol 71(3):271–81 DOI: 10.1007/s00228-015-1806-2

Adaptive TS Sequential Designs

• The 94.12% CI (*i.e.*, an adjusted α of 0.0294) stated in the EMA's GL is *not* suitable to *all* designs.

reference	Туре	Method	T/R	target power	CV	α. αdj	TIE _{max}	α _{adj} 1	TIE _{max} ¹
Potvin <i>et al.</i>	1	В	0.95	80%	10–100%	M4	0.0485	0.0302	0.0501
	2	С					0.0510	0.0282	0.0501
Montague <i>et al.</i>	1	В	0.90			0.0280	0.0518	0.0270	0.0500
	2	D				-	-	0.0269	0.0502
Fuglsang	1	В	0.95	90%	10–80%	0.0284	0.0501	0.0286	0.0501
	2	C/D				0.0274	0.0503	0.0278	0.0503
	1	В	0.90			_	_	0.0286	0.0501
	2	C/D	0.90			0.0269	0.0501	0.0267	0.0500

1. Schütz H, Labes D, Fuglsang A (in preparation 2015)

Modifications of 'Sequential design approaches for bioequivalence studies with crossover designs'

Evaluation

Design

- The statistical model is defined.
- The α which preserves the patient's risk \leq 0.05 and the Acceptance Range (AR) for BE are specified.

Evaluation

- The test/reference ratio is calculated.
- The $100(1 2\alpha)$ % confidence interval (CI) around the ratio is calculated.
 - The width of the CI depends on the variability observed in the study.
 - The *location* of the CI depends on the observed test/reference-ratio.

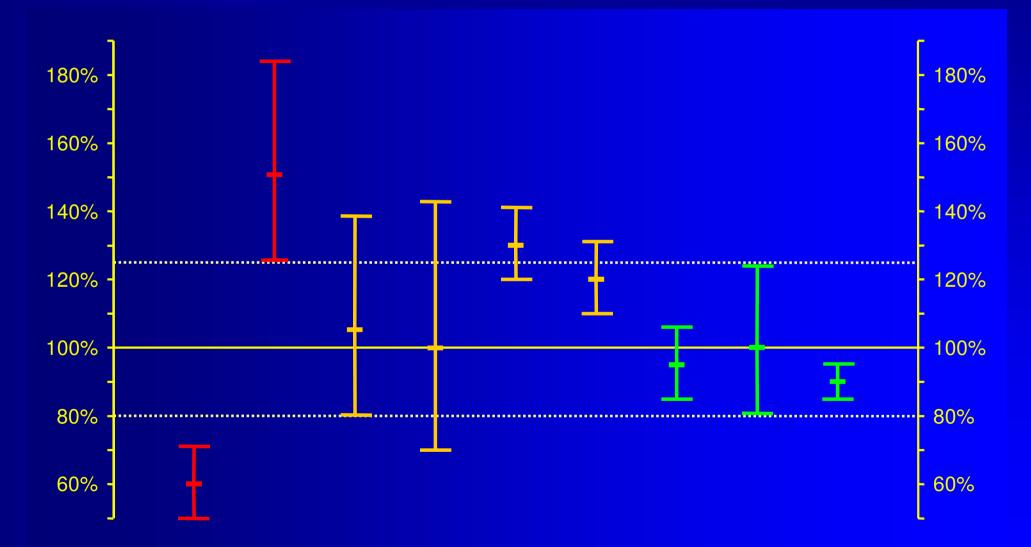
Assessment

Decision based on the CI and the pre-specified AR

Generally a 20% difference between formulations is considered *clinically not relevant*. This leads to

 $L = 100(1-\Delta), U = 100(1/L), [80-125\%]$

CI entirely outside the AR: Bioinequivalence proven


CI overlaps the AR (lies not entirely within the AR): Bioequivalence not proven – indecisive

CI lies entirely within the AR: Bioequivalence proven

Assessment

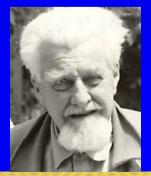
Thank You! Basic Designs for BE Studies Questions after the 2nd presentation, please.

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

To bear in Remembrance...

To call the statistician after the experiment is done may be no more than asking him to perform a *post-mortem* examination: he may be able to say what the experiment died of. *Ronald A. Fisher*



In bioequivalence we must not forget the only important – *the patient*! He/she is living person, not just α 0.05.

Dirk Marteen Barends

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young.

