

Mikimedia Commons • 2013 Pawel "pbm" Szubert • Creative Commons Attribution-ShareAlike 3.0 Unported

Sample Size Estimation for 5 201 Val ence Həlmut Schütz

BEBAC

5th Scientific Conference "Clinical Trials in Ukraine" Kiev, 19 November 2015

α and β

 All formal decisions are subjected to two 'types' of error:

α: Probability of Type I Error (aka Risk Type I)

β: Probability of Type II Error (aka Risk Type II) Example from the justice system – which presumes that the defendant is *not* guilty:

Verdict	Defendant innocent	Defendant guilty	
Presumption of innocence rejected guilty	Error type I	Correct	
Presumption of innocence accepted not guilty	Correct	Error type II	

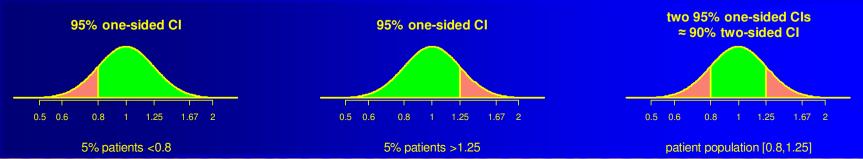
α and β

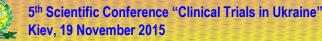
In statistical terminology

Decision	Null hypothesis true	Null hypothesis false
Null hypothesis rejected	Error type I	Correct (H _a)
Failed to reject null hypothesis	Correct (H_0)	Error type II

• In BE-testing the Null hypothesis is bioinequivalence $(\mu_1 \neq \mu_2)!$

Decision	Null hypothesis true	Null hypothesis false
Null hypothesis rejected	Patient's risk	Correct (BE)
Failed to reject null hypothesis	Correct (not BE)	Producer's risk





α....

• Patient's Risk to be treated with an inequivalent formulation (H_0 falsely rejected)

- BA of the test compared to reference in a *particular* patient is risky <u>either</u> below 80% <u>or</u> above 125%.
- If we keep the risk of particular patients at α 0.05 (5%), the risk of the entire population of patients (<80% and >125%) is 2α (10%) – expressed as a confidence interval: 100(1 – 2α) = 90%.

... and β

• Producer's Risk to get no approval of an equivalent formulation (H_0 falsely not rejected)

- Fixed in study planning to ≤ 0.2 (20%), where power = $1 \beta = \geq 80\%$
- If power is set to 80%, one out of five studies will fail just by chance!

$$\alpha$$
 0.05BEnot BE β 0.20

A posteriori (post hoc) power does not make sense! Either a study has demonstrated BE or not.

Sample Size (Guidelines)

•Minimum

- 12 WHO, EU, CAN, NZ, AUS, AR, MZ, ASEAN States, RSA, Russia ("Red Book"), Ukraine
- ISA 'A pilot study that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.'
- **18** Russia (2008)
- 20 RSA (MR formulations)
- 24 Saudia Arabia (12 to 24 if statistically justifiable)
- 24 Brazil, USA (in replicate designs intended for RSABE)
- Sufficient number' Japan

Sample Size (Guidelines)

Maximum

- Generally not specified (decided by IEC/IRB and/or local Authorities).
- **ICH E9, Section 3.5 states:**
 - 'The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed.'

No Sample Size 'Calculation'

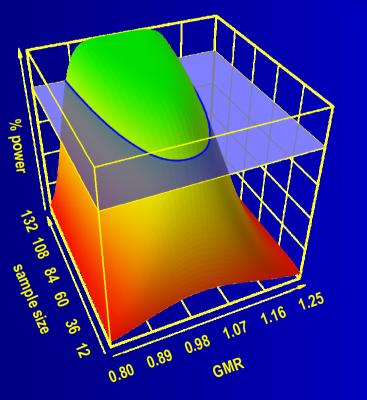
- It is not possible to *directly* calculate the required sample size.
- Power is calculated instead; the smallest sample size which fulfills the minimum target power is used.
 - Example:
 - α 0.05, target power 80% (β 0.2), expected T/R 0.95, CV_{intra} 30% \rightarrow minimum sample size 39 (power 80.6%), rounded *up* to the next even number in a 2×2×2 study (power 81.6%).

n	Power (%)
36	77.24
37	78.39
38	79.53
39	80.56
40	81.58

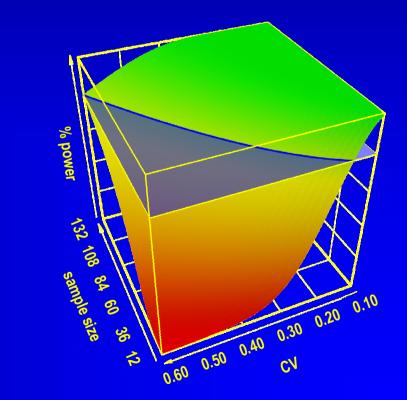
Power Surfaces

100

80


60

40


20

2×2×2 crossover study, target power 80%

CV 0.30

Power vs. Sample Size

How many subjects are enough?

- Most guidelines recommend 80 90% power.
- If a study is planned for ≤70% power, problems with the ethics committee are possible (ICH E9).
- If a study is planned for >90% power (especially with low variability drugs), additional problems with regulators are possible ('forced bioequivalence').
- Some subjects ('alternates') should be added to the estimated sample size according to the expected drop-out rate – especially for studies with more than two periods or multiple-dose studies.

Hierarchy of Designs

•The more 'sophisticated' a design is, the more information can be extracted.

 Hierarchy of designs: Full replicate (TRTR | RTRT or TRT | RTR),
Partial replicate (TRR | RTR | RRT)
Standard 2×2×2 cross-over (TR | RT)
Parallel (R | T)

Variances which can be estimated:

Parallel: 2×2×2 Xover: Partial replicate: Full replicate:

total variance (between + within subjects)

- $2 \times 2 \times 2$ Xover: + between, within subjects \cancel{P}
- Partial replicate: + within subjects of reference 4
 - + within subjects of reference and test 🕩

Coefficient(s) of Variation

- From any design one gets variances of designs which are lower in the hierarchy as well.
 - Total CV% from a 2×2×2 crossover used in planning a parallel design study:
 - Intra-subject CV% (within)
 - Inter-subject CV% (between)
 - Total CV% (pooled)

$$CV_{intra} \% = 100 \cdot \sqrt{e^{MSL_W} - 1}$$
$$CV_{inter} \% = 100 \cdot \sqrt{e^{\frac{MSE_B - MSL_W}{2}} - 1}$$

$$CV_{\text{total}} \% = 100 \cdot \sqrt{e^{\frac{MSE_B + MSE_W}{2}} - 1}$$

Coefficient(s) of Variation

However, CVs of higher design levels not available. If only mean ± SD of reference is available...

- 'Rule of thumb' $CV_{intra} \approx 60\%$ of CV_{total} not correct.
- A crossover study must not be planned based on CV_{total}.
- Examples (2×2×2 studies)

drug	formulation	design	n	PK metric	CV _{intra}	CV _{inter}	CV _{total}
methylphenidate	biphasic MR	SD	12	AUC _{0-t}	7.0	19.1	20.4
laroxetine	XR	MD	32	AUC _{0-τ}	25.2	55.1	62.1
lansoprazole	DR	SD	47	C _{max}	47.0	25.1	54.6

Pilot study unavoidable, unless a TSD is used.

- Sample Size Tables (Phillips, Diletti, Hauschke, Chow, Julious, ...)
- Approximations (Diletti, Chow, Julious, ...)
- General purpose (SAS, S+, R, StaTable, ...) and specialized software (nQuery Advisor, PASS, FARTSSIE, StudySize, ...)
- Exact method (*R*-package *PowerTOST*) Currently only *PowerTOST* provides sample size estimation for reference-scaling (EMA, FDA) and FDA's method for NTIDs.

Sensitivity Analysis

•ICH E9 (1998)

Section 3.5 Sample Size, paragraph 3

- The method by which the sample size is calculated should be given in the protocol [...]. The basis of these estimates should also be given.
- It is important to investigate the sensitivity of the sample size estimate to a variety of deviations from these assumptions and this may be facilitated by providing a range of sample sizes appropriate for a reasonable range of deviations from assumptions.
- In confirmatory trials, assumptions should normally be based on published data or on the results of earlier trials.

Sensitivity Analysis

8

75

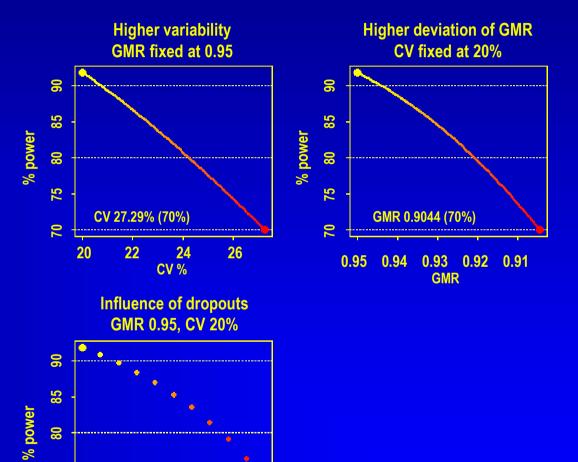
2

26

n 16 (73.54%)

24

22


n

18

20

Example

- **CV 20%, GMR 0.95,** AR 80 – 125%, target power 90%, min. acceptable 70%.
- Estimated sample size: 26 (91.76% power)
- Acceptable relative deviations:
 - +36.4%
 - **GMR** -4.80%
 - -38.5% <u>n</u>

Sensitivity Analysis

•Has to be done before the study (a priori).

•The Myth of retrospective (a posteriori) Power:^{1,2,3}

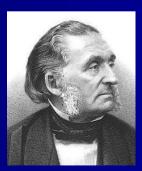
- High power does not further support the claim of already demonstrated bioequivalence.
- Low power does not invalidate the conclusion of claimed bioequivalence.
 - 1. Lenth RV (2000) Two Sample-Size Practices that I don't recommend http://www.math.uiowa.edu/~rlenth/Power/2badHabits.pdf
 - 2. Hoenig JM, Heisey DM (2001) *The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis* The American Statistician 55(1):19–24 <u>http://www.vims.edu/people/hoenig_jm/pubs/hoenig2.pdf</u>
 - 3. Bacchetti P (2010) *Current sample size conventions: Flaws, harms, and alternatives* BMC Medicine 8(17) DOI: 10.1186/1741-7015-8-17

Thank You! Sample Size Estimation for BE Studies Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

To bear in Remembrance...


Power. That which statisticians are always calculating but never have.

Power: That which is wielded by the priesthood of clinical trials, the statisticians, and a stick which they use to beta their colleagues.

Power Calculation – A guess masquerading as mathematics.

Stephen Senn

You should treat as many patients as possible with the new drugs while they still have the power to heal. *Armand Trousseau*

