Добро пожаловать!

Introduction to Bioequivalence

Helmut Schütz
BEBAC

莫斯科，2012年5月23日
Answering the Question: What is Enlightenment?

"Enlightenment is man’s emergence from his self-imposed immaturity for which he himself was responsible. Immaturity and dependence are the inability to use one’s own intellect without the direction of another. One is responsible for this immaturity and dependence, if its cause is not a lack of intelligence, but a lack of determination and courage to think without the direction of another. Sapere aude! Have courage to use your own understanding! is therefore the slogan of Enlightenment."

Immanuel Kant (1784)
Bioequivalence Studies

- Defining study objectives
- Fasting / fed
- Single dose / multiple dose
- Reference product (MR / IR)
- Selecting CROs
- Protocol development
- Ethical considerations
- Assessing clinical and safety laboratory facilities
- Selecting subjects
- Adhering to guidelines
Bioequivalence Studies

- Defining study objectives
- Protocol development
- Reference product (MR / IR)
- Adhering to guidelines
- Ethical considerations
- Fasting / fed
- Assessing clinical and safety laboratory facilities
- Selecting CROs
- Single dose / multiple dose
- Selecting subjects

Introduction to Bioequivalence
Overview

- Bioequivalence
 - Surrogate of clinical equivalence or
 - Measure of pharmaceutical quality?

- Types of studies
 - Pharmacokinetic (PK)
 - Pharmacodynamic (PD)
 - Clinical (equivalence and/or safety/efficacy)
Overview

- Types of studies (cont’d)
 - Healthy Subjects
 - Patients
 - Single dose
 - Multiple dose
 - Cross-over, replicate
 - Parallel
 - Reference product (MR, IR, solution)
Overview

- Types of studies (cont’d)
 - Food effect
 - PK interaction

- Design Issues
 - Dose regimen
 - Fasted / fed state
 - Type of standard meals

- Bioanalytics (not GLP!)
 - Parent drug / metabolite(s) / enantiomers / pro-drugs
 - Validation / routine application
Overview

- Ethics (GCP!)
 - Dose levels / number of administered doses
 - Number / volume of blood samples
 - Drug and/or adverse effects
- Clinical performance (GCP!)
 - CRO selection
 - Responsibilities of sponsor / investigator
 - Audits / monitoring
Overview

• NCA / PK (PD)
 ■ Sampling schedule
 ■ Metrics ($AUC, C_{max}; AUEC, Ae_{max}, \ldots$)
 ■ Design, methods, evaluation

• Sample size
 ■ Estimation from previous and/or pilot studies, literature
 ■ Highly variable drugs

• Biostatistics
 ■ Models & assumptions
 ■ Protocol, evaluation, report
Overview

- ‘What if’-scenarios
 - Common pitfalls
 - Blind review
 - ‘Failed’ studies
 - Deficiency letters
Assumptions

World 'Truth'

Model 'Data'

Theory 'Reality'
Terminology

- Bioavailability
- Comparative BA
- Bioequivalence
- Food effect
- Pilot study
- PK interaction
- relative BA
- absolute BA
Definitions

- **EMEA Guideline on BE (2010)**

 A bioequivalence study is basically a comparative bioavailability study designed to establish equivalence between test and reference products.

 - Comparative BA,
 - designed to demonstrate BE,
 - reference = innovator’s product.

- **Russian BE Guideline (2008)**

 Two drug preparations are considered to be bioequivalent if bioavailability of drug substance is the same.

EMEA Human Medicines Evaluation Unit / CPMP
Guideline on Investigation of Bioequivalence(2010)
http://bebac.at/Guidelines.htm - EU

Ministry of Health and Social Development Russian Federation
Drugs Bioequivalence Evaluation (2008)
http://bebac.at/Guidelines.htm - RU
Bioequivalence...

- Comparative BA
 - true experiment; no bibliographic comparison
- Designed to demonstrate BE
 - variability,
 - deviation of test from reference,
 - drop-out rate,…
 ➔ to be able (statistical power!) to demonstrate BE

- Reference = Innovator’s product

#1: BE [90%–125%]
#2: BE [80%–110%]
#3: not BE [76%–103%]; (but ‘BE’ to #2)
Bioequivalence...

- EMA GL on BE (2010)

Two medicinal products containing the same active substance are considered bioequivalent if they are pharmaceutically equivalent or pharmaceutical alternatives and their bioavailabilities (rate and extent) after administration in the same molar dose lie within acceptable predefined limits. These limits are set to ensure comparable in vivo performance, i.e. similarity in terms of safety and efficacy.
Bioequivalence...

- Russian GL on BE (2008)

Two drug preparations are considered to be bioequivalent if bioavailability of drug substance is the same. Bioavailability – percentage amount of the drug substance entered systemic blood flow (extent of absorption) and the rate of this process (rate of absorption).
Global Harmonization?

- In almost all regulations two PK metrics are necessary to demonstrate BE, namely
 - extent \((AUC_t \text{ or } AUC_{\infty})\) and
 - rate \((C_{\text{max}})\) of exposure.

- One exception: US-FDA (where \(AUC_t \text{ and } AUC_{\infty}\) must demonstrate extent of exposure)
 - Although stated in the GL, such a requirement is statistically flawed.
 - Multiplicity issues (what is the patient’s risk?)
 - Impossible \(\alpha\)-adjustment (interdependence)

There can be only one!
History of BE

- Bioequivalence
 - Problems first noticed with NTIDs (Narrow Therapeutic Index Drugs) in the late 1970s
 - Intoxications (and even some fatalities!) were reported (warfarin, digoxin, phenytoin)
 - Warfarin, digoxin: Patients switched between formulations which were got approval solely based on *in vitro* data (innovator ↔ generic)
 - Phenytoin: The innovator’s API was changed from a microcrystalline to an amorphous form resulting in 10 times higher plasma concentrations in steady state
History of BE

- **Bioequivalence**
 - Surrogate of clinical equivalence (1980+)
 - Studies in steady state in order to reduce variability
 - Studies based on active metabolite
 - Wider acceptance range if clinical justifiable (not FDA!)
 - Measure of pharmaceutical quality (2000+)
 - Single dose studies preferred
 - Generally parent drug
 - Widening of acceptance range exceptional (except FDA HVDs and EMA C_{max} of HVDs)
Early 1980s

- First method
 - FDA’s 75/75 Rule
 BE, if 75% of subjects show ratios of 75%-125%.
 Not a statistic, variable formulations may pass by chance...

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>R</th>
<th>T/R</th>
<th>75%-125%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>81</td>
<td>87.7%</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>65</td>
<td>93.8%</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>94</td>
<td>85.1%</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>74</td>
<td>89.2%</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>54</td>
<td>174.1%</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>63</td>
<td>154.0%</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>85</td>
<td>82.4%</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>90</td>
<td>84.4%</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>53</td>
<td>101.9%</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>56</td>
<td>176.8%</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>83</td>
<td>90</td>
<td>92.2%</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>68</td>
<td>75.0%</td>
<td>yes</td>
</tr>
</tbody>
</table>

BE Cabana
Assessment of 75/75 Rule: FDA Viewpoint

JD Haynes
FDA 75/75 Rule: A Response
J Pharm Sci 72, 99-100 (1983)
Early method

- Testing for a significant difference (t-test) at $\alpha = 0.05$

Problem:

- **High** variability in differences → formulation will pass ($p \geq 0.05$)
- **Low** variability in differences → formulation will fail ($p < 0.05$)
- This is counterintuitive and the opposite of what we actually want!
Example

Nitsche V, Mascher H, and H Schütz

Comparative bioavailability of several phenytoin preparations marketed in Austria
Mid 1980s II

- Later method
 - FDA’s 80/20 rule
 - At least 80% power to be able to demonstrate a 20% difference \((t\)-test\) at \(\alpha 0.05\)
 - Essentially the 75/75 rule in more statistical terms.
 - Power 71.5% < 80! (not BE)
 - In any study (even at ‘true’ T=R) with variability
 \[
s\sqrt{\frac{2}{n}} > 6.44
\]
 it is impossible to show BE!

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>R</th>
<th>T-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>81</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>65</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>94</td>
<td>-14</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>74</td>
<td>-8</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>54</td>
<td>+40</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>63</td>
<td>+34</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>85</td>
<td>-15</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>90</td>
<td>-14</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>53</td>
<td>+1</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>56</td>
<td>+43</td>
</tr>
<tr>
<td>11</td>
<td>83</td>
<td>90</td>
<td>-7</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>68</td>
<td>-17</td>
</tr>
<tr>
<td>mean</td>
<td>75</td>
<td>73</td>
<td>+2</td>
</tr>
<tr>
<td>SD</td>
<td>16</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>

\(t\)-table 2.2010
\(t\)-calc 0.3687
n.s.
Power 71.59%
Late 1980s

- TOST (Two One-Sided Tests)
 - First formulation of the problem based on equivalence rather than a difference
 - Two One-Sided t-tests
 - Bioequivalent if
 \[p(<80\%) + p(>120\%) \leq 0.05 \]
 - Equivalent to a 90% confidence interval within an acceptance range of 80% – 120%

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>R</th>
<th>T-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>81</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>65</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>94</td>
<td>-14</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>74</td>
<td>-8</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>54</td>
<td>+40</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>63</td>
<td>+34</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>85</td>
<td>-15</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>90</td>
<td>-14</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>53</td>
<td>+1</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>56</td>
<td>+43</td>
</tr>
<tr>
<td>11</td>
<td>83</td>
<td>90</td>
<td>-7</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>68</td>
<td>-17</td>
</tr>
</tbody>
</table>

\[T/R = 103.32\% \]

\[90\% CI (lo) = 88.35\% \]

\[90\% CI (hi) = 118.30\% \]

DA Schuirmann

A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability

Human Guineapigs I

- BE studies as a surrogate for clinical efficacy / safety (‘essential similarity’)
 - We want to get unbiased estimates, *i.e.*, the point estimate from the study sample ...

\[
PE = \frac{\hat{X}_{\text{Test}}}{\hat{X}_{\text{Reference}}}
\]

- ... should be representative for the population of patients.

\[
F_{\text{Pop}} = \frac{\mu_{\text{Test}}}{\mu_{\text{Reference}}}
\]
Human Guineapigs II

- BE studies as a special case of documented pharmaceutical quality
 - The *in vivo* release in the biostudy …

\[PE = \frac{\hat{X}_{Test}}{\hat{X}_{Reference}} \]

- … should be representative for the *in vitro* performance.

\[f_2 = 50 \cdot \log \left[\frac{100}{\sqrt{1 + \frac{1}{n} \sum_{t=1}^{n} (\bar{R}(t) - \bar{T}(t))^2}} \right] \]
Science → Regulations

- We can’t compare bioavailabilities in the entire population of patients
 - Scientific Reductionism (based on assumptions)
 - ‘Similar’ concentrations in healthy subjects will lead to ‘similar’ effects in patients.
 - Equal doses and inter-occasion clearances!

\[
\begin{align*}
AUC_T &= \frac{D_T \cdot F_T}{CL_T}, \\
AUC_R &= \frac{D_R \cdot F_R}{CL_R}, \\
\left[D_T &\equiv D_R, CL_T \equiv CL_R \right] \\
F_{rel} (BA) &= \frac{F_T}{F_R} \equiv \frac{AUC_T}{AUC_R}
\end{align*}
\]
Models vs. Reality
A Reminder

Rose
is a rose
is a rose
is a rose.

Guidelines
are guidelines
are guidelines.

Gertrude Stein (1913)

Henrike Potthast (ca. 2004)

In advanced engineering, you expected failure; you learned as much from failures as from successes – indeed if you never suffered a failure you probably weren’t pushing the envelope ambitiously enough.

Stephen Baxter; Transcendent, Chapter 36 (2006)
Thank You!

Introduction to Bioequivalence

Open Questions?

Helmut Schütz
BEBAC
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at