

Wikimedia Commons • 2006 Schwallex • Creative Commons Attribution-ShareAlike 3.0 Unported

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

To bear in Remembrance...

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.

Even though it's *applied* science we're dealin' with, it still is – *science*!

Karl R. Popper

Leslie Z. Benet

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

Information

BE Study Designs

 The more 'sophisticated' a design is, the more information can be extracted

Hierarchy of designs:
 Full replicate (TRTR | RTRT or TRT | RTR),
 Partial replicate (TRR | RTR | RRT)
 Standard 2×2 cross-over (RT | RT)
 Parallel (R | T)

Variances which can be estimated:

Parallel: 2×2 Xover: Partial replicate: Full replicate:

total variance (between + within)

- + between, within subjects \cancel{P}
- + within subjects (reference) 🕩
- + within subjects (reference, test) 🕩

Data Transformation?

- BE testing started in the early 1980s with an acceptance range of 80% – 120% of the reference based on the *normal* distribution
- Was questioned in the mid 1980s
 - Like many biological variables AUC and C_{max} do not follow a normal distribution
 - Negative values are impossible
 - The distribution is skewed to the right
 - Might follow a lognormal distribution
 - Serial dilutions in bioanalytics lead to multiplicative errors

Data Transformation?

Pooled data from real studies.

Clearly in favor of a lognormal distribution.

Shapiro-Wilk test highly significant for normal distribution (assumption rejected).

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

Data Transformation!

Data of a real study.

Both tests *not* significant (assumptions accepted).

Tests not acceptable according to GLs.

Transformation based on prior knowledge (PK)!

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

Parallel designs

•Two-Group Parallel Design

Parallel designs (cont'd)

Two-group parallel design

- Advantages
 - Clinical part sometimes faster than X-over.
 - Straigthforward statistical analysis.
 - Drugs with long half life.
 - Potentially toxic drugs or effect and/or AEs unacceptable in healthy subjects.
 - Studies in patients, where the condition of the disease irreversibly changes.

Disadvantages

- Lower statistical power than X-over
- Phenotyping mandatory for drugs showing polymorphism.

Cross-over designs

Standard 2×2×2 Design

- Every subject is treated both with test and reference
- Subjects are randomized into two groups; one is receiving the formulations in the order RT and the other one in the order TR.
 - These two orders are called 'sequences'.
- Whilst in a paired design we must rely on the assumption that no external influences affect the periods, a cross-over design will account for that.

Cross-over design: Model

Multiplicative Model (X-over without carryover) $\ln (X_{ijk}) = \ln (\mu) + \ln (\pi_k) + \ln (\Phi_l) + \ln (s_{ik}) + \ln (e_{ijk})$ $X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$

 X_{ijk} : response of *j*-th subject $(j=1,...,n_i)$ in *i*-th sequence (i=1,2) and *k*-th period (k=1,2), μ : global mean, μ_l : expected formulation means (l=1,2): $\mu_1 = \mu_{test}, \mu_2 = \mu_{ref.}$, π_k : fixed period effects, Φ_l : fixed formulation effects (l=1,2): $\Phi_1 = \Phi_{test}, \Phi_2 = \Phi_{ref.}$

Cross-over design: Assumptions

Multiplicative Model (X-over without carryover)

$$X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$$

• All $ln\{s_{ik}\}$ and $ln\{e_{ijk}\}$ are independently and normally distributed about unity with variances σ_s^2 and σ_e^2 .

- This assumption may not hold true for all formulations; if the reference formulation shows *higher* variability than the test formulation, a 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - This assumption should not be a problem, unless you plan to include twins or triplets in your study...

Standard 2×2×2 design

- Advantages
 - Globally applied standard protocol for bioequivalence, PK interaction, food studies
 - Straigthforward statistical analysis
- Disadvantages
 - Not suitable for drugs with long half life
 - \rightarrow parallel design
 - Not optimal for studies in patients with instable diseases
 - \rightarrow parallel design
 - Not optimal for HVDs/HVDPs
 - \rightarrow replicate designs with reference-scaling

Higher Order Designs (for more than two treatments)

Latin Squares

- Each subject is randomly assigned to sequences, where number of treatments = number of sequences = number of periods.
- Variance Balanced Designs

•3×3×3 Latin Square design

•3×3×3 Latin Square design

Advantages

- Allows to choose between two candidate test formulations or comparison of one test formulation with two references.
- Easy to adapt.
- Number of subjects in the study is a multiplicative of three.
- Design for establishment of Dose Proportionality.

Disadvantages

- Statistical analysis more complicated not available in all software.
- Pairwise comparisons are imbalanced.
- May need measures against multiplicity (increasing the sample size).
- Not mentioned in any guideline.

Higher Order Designs (for more than two treatments)

Variance Balanced Designs (Williams' Designs)

- For e.g., three formulations there are three possible pairwise differences among formulation means (*i.e.*, form. 1 vs. form. 2., form 2 vs. form. 3, and form. 1 vs. form. 3).
- It is desirable to estimate these pairwise effects with the same degree of precision (there is a common variance for each pair).
 - > Each formulation occurs only once with each subject.
 - > Each formulation occurs the same number of times in each period.
 - The number of subjects who receive formulation *i* in some period followed by formulation *j* in the next period is the same for all *i* # *j*.
- Such a design for three formulations is the three-treatment sixsequence three-period Williams' Design.

•Williams' Design for three treatments

Soquence		Period	
Sequence -	Ι	II	III
1	R	T ₂	T ₁
2	T ₁	R	T ₂
3	T ₂	T ₁	R
4	T ₁	T ₂	R
5	T ₂	R	T ₁
6	R	T ₁	T ₂

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

Williams' Design for four treatments

Seguence	Period			
Sequence	Ι	II	III	IV
1	R	T ₃	T ₁	T ₂
2	T ₁	R	T ₂	T ₃
3	T ₂	T ₁	T ₃	R
4	T ₃	T ₂	R	T ₁

Williams' Designs

- Advantages
 - Allows to choose between two candidate test formulations or comparison of a test formulation with two references.
 - Design for establishment of Dose Proportionality.
 - Paired comparisons are balanced.
 - Mentioned in Brazil's (ANVISA) and EMA guidelines.
- Disadvantages
 - Mores sequences for an odd number of treatment needed than in a Latin Squares design (but equal for even number).
 - Statistical analysis more complicated not available in all software.
 - May need measures against multiplicity (increasing the sample size).

Higher Order Designs (cont'd)

Bonferroni-correction needed (sample size!)

- If more than one formulation will be marketed (for three simulta'neous comparisons without correction patients' risk increases from 5 to 14%).
- Sometimes requested by regulators in dose proportionality.

k	Ρ _{α=0.05}	Ρ _{α=0.10}	$lpha_{adj.}$	$P_{\alpha adj.}$	α _{adj.}	P _{αadj.}
1	5.00%	10.00%	0.0500	5.00%	0.100	10.00%
2	9.75%	19.00%	0.0250	4.94%	0.050	9.75%
3	14.26%	27.10%	0.0167	4.92%	0.033	6.67%
4	18.55%	34.39%	0.0125	4.91%	0.025	9.63%
5	22.62%	40.95%	0.0100	4.90%	0.020	9.61%
6	26.49%	46.86%	0.0083	4.90%	0.017	9.59%

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

Higher Order Designs (cont'd)

Effect of α-adjustment on sample size (expected T/R 95%, CV_{intra} 20%, power 80%)

CV/0/	2×2	6×3	comp.	4×4	comp.
67%	α 0.05	$\alpha_{adj.}$ 0.025	2×2	α _{adj.} 0.0167	2×2
10.0	8	12	+50%	16	+100%
12.5	10	12	+20%	16	+60%
15.0	12	18	+50%	16	+33%
17.5	16	24	+50%	24	+50%
20.0	20	24	+20%	28	+40%
22.5	24	30	+25%	36	+50%
25.0	28	36	+29%	40	+49%
27.5	34	42	+24%	48	+41%
30.0	40	54	+35%	56	+40%

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

BE Evaluation

Based on the design set up a statistical model.

- Calculate the test/reference ratio.
- Calculate a (generally 90%) confidence interval (CI) around the ratio.
- •The *width* of the CI depends on the variability observed in the study.
- •The *location* of the CI depends on the observed test/reference-ratio.

BE Assessment

Decision based on the CI and the Acceptance Range (AR)
CI entirely outside the AR: Bioinequivalence proven
CI overlaps the AR (lies not entirely within the AR): Bioequivalence not proven – indecisive
CI lies entirely within the AR: Bioequivalence proven

BE Assessment

Add-on / Two-Stage Designs

- Sometimes properly designed and executed studies fail due to
 - 'true' bioinequivalence,
 - poor study conduct (increasing variability),
 - pure chance (producer's risk hit),
 - false (over-optimistic) assumptions about variability and/or T/R-ratio.
- •The patient's risk must be preserved
 - Already noticed at Bio-International Conferences (1989, 1992) and guidelines from the 1990s.

Modified from Fig. 1 Tothfálusi *et al.* (2009)

Counterintuitive concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low, but not bioequivalent – even if the difference is quite small – due to high variability.

HVDs/HVDPs are safe

flat & steep PK/PD-curves

High variability

- For Highly Variable Drugs / Drug Products (HVDs/HVDPs) it may be almost impossible to show BE with a reasonable sample size.
- The common 2×2 cross-over design over assumes Independent Identically Distributions (IID), which may not hold. If e.g., the variability of the reference is higher than the one of the test, one obtains a high common (pooled) variance and the test will be penalized for the 'bad' reference.

Replicate designs

 Each subject is randomly assigned to sequences, where at least one of the treatments (generally the reference) is administered at least twice

- Not only the global within-subject variability, but also the within-subject variability per treatment may be estimated.
- Smaller subject numbers compared to a standard 2×2×2 design – but outweighed by an increased number of periods.
- Same overall number of individual treatments (biosamples to be analyzed)!

Replicate designs

Any replicate design can be evaluated according to 'classical' (unscaled) Average Bioequivalence (ABE)

ABE mandatory if scaling not allowed

- FDA: s_{WR} <0.294 (CV_{WR} <30%); different models dependend on design (*i.e.*, SAS Proc MIXED for full replicate and Proc GLM for partial replicate).
- EMA: $CV_{WR} \leq 30\%$; all fixed effects model according to 2011's Q&A-document preferred (e.g., SAS Proc GLM).
- Even if scaling is not intended or applicable, replicate designs give more information about formulation(s).

Application: HVDs/HVDPs

•*CV_{WR}* >30 %

- ✓USA Recommended in API specific guidances. Scaling for *AUC* and/or C_{max} acceptable, GMR 0.80 – 1.25; ≥24 subjects enrolled.
- ± EU Widening of acceptance range (only C_{max}) to maximum of 69.84 – 143.19%), GMR 0.80 – 1.25. Demonstration that CV_{WR} >30% is not caused by outliers. Justification that the widened acceptance range is clinically not relevant.

Replicate designs

 Two-sequence three-period TRT RTR Two-sequence four-period TRTR RTRT •and many others... (FDA: TRR | RTR | RRT, aka 'partial replicate') •The statistical model is complicated and depends on the actual design! $X_{iikl} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ii} \cdot e_{ijkl}$

HVDPs (EMA/FDA; sample sizes)

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics Moscow, 24 April 2014

HVDPs (EMA)

•EU GL on BE (2010)

Average Bioequivalence (ABE) with Expanding Limits (ABEL)

Based on σ_{WR} (the *intra*-subject standard deviation of the reference formulation) calculate the scaled acceptance range based on the regulatory constant k ($\theta_s = 0.760$); limited at CV_{WR} 50%.

$$[L-U] = e^{\mp k \cdot \sigma_{WR}}$$

CV_{WR}	L - U
≤30	80.00 – 125.00
35	77 <mark>.2</mark> 3 – 129.48
40	74.62 – 143.02
45	72.15 – 138.5 9
≥50	<u> 69.84 – 143.19</u>

HVDPs (EMA)

•Q&A document (March 2011)

Two methods proposed (Method A preferred)

- Method A: All effects fixed; assumes equal variances of test and reference, and no subject-by-formulation interaction; only a common within (*intra*-) subject variance is estimated.
- Method B: Similar to A, but random effects for subjects. Common within (*intra*-) subject variance and between (*inter*-) subject variance are estimated.
- Outliers: Boxplots (of model residuals?) suggested.

Questions & Answers on the Revised EMA Bioequivalence Guideline Summary of the discussions held at the 3rd EGA Symposium on Bioequivalence June 2010, London http://www.egagenerics.com/doc/EGA_BEQ_Q&A_WEB_QA_1_32.pdf

Example datasets (EMA)

•Q&A document (March 2011) Data set I: Full replicate (RTRT | TRTR), 77 subjects, imbalanced, incomplete **FDA** s_{WR} 0.446 \geq 0.294 \rightarrow apply RSABE (CV_{WR} 46.96%) a. critbound $-0.0921 \le 0$ and b. PE 115.46% ⊂ 80.00–125.00% $> CV_{WR}$ 46.96% \rightarrow apply ABEL (> 30%) Scaled Acceptance Range: 71.23–140.40% > Method A: 90% CI 107.11–124.89% ⊂ AR; PE 115.66% Method B: 90% CI 107.17–124.97% ⊂ AR; PE 115.73%

 \checkmark

Example datasets (EMA)

•Q&A document (March 2011) Data set II: Partial replicate (TRR | RTR | RRT), 24 subjects, balanced, complete **FDA** s_{WR} 0.114 <0.294 \rightarrow apply ABE (CV_{WR} 11.43%) 90% CI 97.05–107.76% \subset AR (CV_{intra} 11.55%) **EMA** $> CV_{WR}$ 11.17% \rightarrow apply ABE (\leq 30%) Method A: 90% CI 97.32–107.46% ⊂ AR; PE 102.26% \checkmark Method B: 90% CI 97.32–107.46% ⊂ AR; PE 102.26% > A/B: CV_{intra} 11.86%

Thank You! Basic Designs for BE Studies Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

To bear in Remembrance...

To call the statistician after the experiment is done may be no more than asking him to perform a *post-mortem* examination: he may be able to say what the experiment died of. *Ronald A. Fisher*

[The] impatience with ambiguity can be criticized in the phrase: absence of evidence is not evidence of absence.

Carl Sagan

[...] our greatest mistake would be to forget that data is used for serious decisions in the very real world, and bad information causes suffering and death.

Ben Goldacre

