Biostatistics
Two-Stage Sequential Designs

Helmut Schütz
BEBAC
Add-on / Two-Stage Designs

- Sometimes properly designed and executed studies fail due to
 - ‘true’ bioinequivalence,
 - poor study conduct (increasing variability),
 - pure chance (producer’s risk hit),
 - false (mainly over-optimistic) assumptions about the CV and/or T/R-ratio.

- The patient’s risk must be preserved
 - Already noticed at Bio-International Conferences (1989, 1992) and guidelines from the 1990s.
Sequential Designs

Have a long and accepted tradition in clinical research (mainly phase III)

 - First proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe, but
 - new methods stated in recent guidelines.

AL Gould
Group Sequential Extension of a Standard Bioequivalence Testing Procedure
DOI: 10.1007/BF02353786
Sequential Designs

- Methods by Potvin et al. (2008) first validated framework in the context of BE
 - Supported by the ‘Product Quality Research Institute’
 (members: FDA/CDER, Health Canada, USP, AAPS, PhRMA…)
 - Three of BEBAC’s protocols accepted by German BfArM, first product approved in 06/2011.

Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, and RA Smith
Sequential design approaches for bioequivalence studies with crossover designs
Review of Guidelines

- EMA (Jan 2010)
 Acceptable; Potvin et al. Method B preferred (?)

- Canada (May 2012)
 Potvin et al. Method C recommended

- FDA (Jun 2012)
 Potvin et al. Method C/D recommended
 API specific guidances: Loteprednol, (Dexamethasone / Tobramycin)

- Russia (2013)
 Acceptable; Potvin et al. Method B preferred (?)
Potvin et al. (Method B)

Evaluate BE at stage 1 ($\alpha 0.0294$)

- yes
 - BE met?
 - yes
 - Pass
 - no
 - no
 - yes
 - $\geq 80\%$?
 - yes
 - Estimate sample size based on CV_{intra}; T/R 0.95, $\alpha 0.0294$; continue to stage 2
 - no
 - Evaluate BE at stage 2 using pooled data from both stages ($\alpha 0.0294$)
 - Fail
 - no
 - Fail

- no
 - Evaluate power at stage 1 using α-level of 0.0294
Potvin et al. (Method B)

1150 \cdot 10^6 \text{Sim’s (Method B)}

Two-Stage Sequential Designs
Two-Stage Sequential Designs

Potvin et al. (Method B)

1150 \cdot 10^6 \text{Sim's (Method B)}

% in stage 2

CV

n_1

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics
Moscow, 24 April 2014
Potvin et al. (Method B)

Sample size penalty (CV 14–40%, 80% power)

- \(n_{\text{total}} = 1.084n \) planned for 0.0500
- \(n_{\text{total}} = 1.023n \) planned for 0.0294

- \(n_{\text{total}} \): average sample size (two-stage)
- \(n \): sample size (fixed)
Potvin et al. (Method B)

Technical Aspects

- Only *one* Interim Analysis (after stage 1).
- Use software (wide step sizes in Diletti’s tables); preferably the exact method (avoid approximations).
- Should be termed ‘Interim Power Analysis’ *not* ‘Bioequivalence Assessment’ in the protocol.
- No *a posteriori* Power – only a validated method in the decision tree.
- No adjustment for T/R observed in stage 1 (not fully adaptive).
Potvin et al. (Method B)

Technical Aspects (cont’d)

- No futility rule preventing to go into stage 2 with a very high sample size!
 Must be clearly stated in the protocol (unfamiliar to the IEC because common in Phase III).

- Pocock’s $\alpha 0.0294$ is used in stage 1 and in the pooled analysis (data from stages 1 + 2),
 i.e., the $1 - 2 \times \alpha = 94.12\%$ CI is calculated.

- Overall patient’s risk preserved at ≤ 0.05.
Potvin et al. (Method B)

- Technical Aspects (cont’d) + EMA modification

- If the study is stopped after stage 1, the statistical model is:

 \[
 \text{fixed: sequence + period + treatment} \\
 + \text{subject(sequence)}
 \]

- If the study continues to stage 2, the model for the combined analysis is:

 \[
 \text{fixed: stage + sequence + sequence(stage)} \\
 + \text{subject(sequence × stage) + period(stage)} \\
 + \text{treatment}
 \]

- No poolability criterion! Combining is \textit{always allowed} – even if a significant difference between stages is observed. No need to test this effect.
Potvin et al. (Method B)

- Technical Aspects (cont’d) + EMA modification
 - Incomprehensible why this modification was introduced by EMA’s Biostatistical Working Party
 - Simulations performed or “gut feeling”?
 - Modification shown to be irrelevant.
 - Furthermore no difference whether subjects were treated as a fixed or random term (unless T/R > 1.20).

Karalis V and P Macheras
On the Statistical Model of the Two-Stage Designs in Bioequivalence Assessment
Technical Aspects (cont’d)

- Potvin et al. used a simple approximative power estimation based on the shifted central t-distribution.
- If possible use the exact method (Owen; R package `PowerTOST` method = 'exact') or at least one based on the noncentral t-distribution (`PowerTOST` method = 'noncentral').
- Power obtained in stage 1 (example 2 from Potvin):

<table>
<thead>
<tr>
<th>method</th>
<th>% power</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximative (shifted central t)</td>
<td>50.49</td>
</tr>
<tr>
<td>approximative (noncentral t)</td>
<td>52.16</td>
</tr>
<tr>
<td>exact (Owen’s Q)</td>
<td>52.51</td>
</tr>
</tbody>
</table>
Two-Stage Sequential Designs

Example (Potvin Method B)

Model Specification and User Settings
- Dependent variable: Response
- Transform: LN
- Fixed terms: int + Sequence + Period + Treatment
- Random/repeated terms: Sequence * Subject

Final variance parameter estimates:
- Var(Sequence * Subject) = 0.408682
- Var(Residual) = 0.0326336
- Intrasubject CV = 0.182132

Bioequivalence Statistics
- User-Specified Confidence Level for CI's = 94.1200
- Percent of Reference to Detect for 2-1 Tests = 20.0%
- A.H.Lower = 0.800, A.H.Upper = 1.250
- Reference: Reference LS Mean = 0.954668, SE = 0.191772, GeoLSM = 2.597808
- Test: Test LS Mean = 1.038626, SE = 0.191772, GeoLSM = 2.825331

- Difference = 0.0840, Diff_SE = 0.0737, df = 10.0
- Ratio(%Ref) = 108.7583

Classical
- CI User = (92.9330, 127.2838)

Failed with 94.12% Confidence Interval

- CV_intra = 18.2%
- \(\alpha = 0.0294\)
Example (Potvin Method B)

library(PowerTOST)
power.TOST(alpha=0.0294, theta0=0.95,
 CV=0.182132, n=12, design='2x2',
 method='exact')

[1] 0.5251476

Power 52.5% – initiate stage 2

sampleN.TOST(alpha=0.0294, targetpower=0.80,
 theta0=0.95, CV=0.182132, design='2x2',
 method='exact')

+++++++++++ Equivalence test - TOST ++++++++++++
Sample size estimation

Study design: 2x2 crossover
log-transformed data (multiplicative model)

alpha = 0.0294, target power = 0.8
BE margins = 0.8 ... 1.25
Null (true) ratio = 0.95, CV = 0.182132

Sample size
n power
20 0.829160

Total sample size 20: include another 8 in stage 2

α 0.0294, T/R 95% – not 108.76%
observed in stage 1!

CV_{intra} 18.2%, 12 subjects in stage 1

Estimate total sample size:
α 0.0294, T/R 95%, CV_{intra} 18.2%,
80% power

Simulations (n, 12, CV 18.2%)
• α_{emp} 0.042635
• power 85.3%
Example (Potvin Method B / EMA)

Model Specification and User Settings

- Dependent variable: Cmax (ng/mL)
- Transform: LN
- Fixed terms: int + Stage + Sequence + Sequence*Stage + Sequence*Stage*Subject + Period(Stage) + Treatment

Final variance parameter estimates:
- Var(Sequence*Stage*Subject) = 0.549653
- Var(Residual) = 0.0458956
- Intrasubject CV = 0.216714

Bioequivalence Statistics

User-Specified Confidence Level for CI's = 94.1200
Percent of Reference to Detect for 2-1 Tests = 20.0%
A.H.Lower = 0.800 A.H.Upper = 1.250

Formulation variable: Treatment
Reference: Reference LS Mean = 1.133431 SE = 0.171385 GeoLSM = 3.106297

Test: Test LS Mean = 1.147870 SE = 0.171385 GeoLSM = 3.151473

Difference = 0.0144, Diff_SE = 0.0677, df = 17.0
Ratio(%Ref) = 101.4544

Classical CI 90% = (90.1729, 114.1472)

CI User = (88.4422, 116.3810)

Average bioequivalence shown for confidence=94.12 and percent=20.0.

α ≤ 0.05

BE shown with 94.12% CI; α ≤ 0.05

8 subjects in stage 2 (20 total), modified model in pooled analysis

Q&A Rev. 7 (March 2013)
Potvin et al. (Method C)

Evaluate power at stage 1 using α-level of 0.050

- yes
 - yes: Evaluate BE at stage 1 (α 0.050)
 - no: Evaluate BE at stage 1 (α 0.0294)

- no
 - yes: BE met?
 - yes: Estimate sample size based on CV_{intra}^2
 T/R 0.95, α 0.0294; continue to stage 2
 - no: Evaluate BE at stage 2 using pooled data from both stages (α 0.0294)
 - no: Pass or fail

Pass or fail

Pass

Pass or fail
Potvin et al. (Method C)

1150 - 10^6 Sim's (Method C)

α

CV

n

6% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.0324 0.0338 0.0352 0.0366 0.0380 0.0394 0.0408 0.0422 0.0436 0.0450 0.0464 0.0478 0.0492 0.0500 0.0506 0.0520

α

2 4 6 8 10 12

60 48 36 24 12

1150 - 10^6 Sim's (Method C)
Potvin et al. (Method B vs. C)

Pros & cons

- Method C (if power $\geq 80\%$) is a conventional BE study; no penalty in terms of α needs to be applied.
- Method C proceeds to stage 2 less often and has smaller average total sample sizes than Method B for cases where the initial sample size is reasonable for the CV.
- If the size of stage 1 is low for the actual CV both methods proceed to stage 2 almost all the time; total sample sizes are similar.
- Method B slightly more conservative than C.
Potvin et al. (Method B vs. C)

Recommendations

- Method C/D preferred due to slightly higher power than method B (FDA, HPFB). Method B for EMA & Russia (?)
- Plan the study *as if* the CV is known
 - If assumptions turn out to be true = no penalty
 - If lower power (CV higher than expected), BE still possible in first stage (penalty; 94.12% CI) or continue to stage 2 as a ‘safety net’.
- Don’t jeopardize! Smaller sample sizes in the first stage than in a fixed design don’t pay off. Total sample sizes are ~10–20% higher.
TSDs: Alternatives

- Methods by Potvin et al. (2008) limited to T/R of 0.95 and 80% power

 Follow-up publications (T/R 0.95...0.90, 80...90% power)

<table>
<thead>
<tr>
<th>reference</th>
<th>method</th>
<th>T/R</th>
<th>target power</th>
<th>CV</th>
<th>$\alpha_{adj.}$</th>
<th>max. $\alpha_{emp.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>B</td>
<td>0.95</td>
<td>80%</td>
<td>10–100%</td>
<td>0.0294</td>
<td>0.0485</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td>0.0510</td>
</tr>
<tr>
<td>Montague et al.</td>
<td>D</td>
<td>0.90</td>
<td></td>
<td></td>
<td>0.0280</td>
<td>0.0518</td>
</tr>
<tr>
<td>Fuglsang</td>
<td>B</td>
<td>0.95</td>
<td>90%</td>
<td>10–80%</td>
<td>0.0284</td>
<td>0.0501</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.90</td>
<td></td>
<td></td>
<td>0.0274</td>
<td>0.0503</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>0.0269</td>
<td>0.0501</td>
</tr>
</tbody>
</table>

Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, and DJ Schuirmann

Additional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’
Pharmaceut Statist 11(1), 8–13 (2011) DOI: 10.1002/pst.483

A Fuglsang

Sequential Bioequivalence Trial Designs with Increased Power and Controlled Type I Error Rates
Montague et al. (Method D)

1150 \cdot 10^6 \text{ Sim's (Method D)}

Two-Stage Sequential Designs

Montague et al. (Method D)
TSDs: Alternatives

 - Based on Method C ($\alpha_{adj.} 0.0294$) or D ($\alpha_{adj.} 0.0280$)
 - Sample size re-estimation based on observed T/R-ratio in stage 1 (fully adaptive)
 - Upper sample size limit (UL)
 - Frameworks:
 - n_1 12–96, CV 10–60%, $n_1+n_2 \leq UL 150$
 - n_1 18–96, CV 20–40%, $n_1+n_2 \leq UL 100$

Karalis V and P Macheras
An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies

V Karalis
The role of the upper sample size limit in two-stage bioequivalence designs
Two-Stage Sequential Designs

Karalis & Macheras

Evaluate power at stage 1 using α-level of 0.050

- yes
 - $\geq 80\%$?
 - no
 - Evaluate BE at stage 1 (α 0.050)
 - yes
 - Evaluate BE at stage 1 (α 0.0294)

Evaluate BE at stage 1 (α 0.050)

- yes
 - $n_1 + n_2 > UL$?
 - no
 - BE met?
 - yes
 - Pass or fail
 - no
 - Fail
 - yes
 - Estimate sample size based on CV_{intra} & T/R_{stage_1}, α 0.0294

Evaluate BE at stage 1 (α 0.0294)

- yes
 - BE met?
 - yes
 - Pass
 - no
 - Fail

- no
 - T/R_{stage_1} {0.8, 1.25}
 - yes
 - Pass or fail
 - no
 - Fail

Evaluate BE at stage 2 using pooled data from both stages (α 0.0294)
Karalis & Macheras (n ≤150)

578·10^6 Sim’s (Karalis/Macheras)
Karalis & Macheras (n ≤150)

library(PowerTOST)
power.TOST(alpha=0.05, theta0=1.0876,
CV=0.182132, n=12, design='2x2',
method='exact')

[1] 0.531698

sampleN.TOST(alpha=0.0294, targetpower=0.80,
theta0=1.0876, CV=0.182132, design='2x2',
method='exact')

+++++++++++ Equivalence test - TOST ++++++++++++
Sample size estimation

Study design: 2x2 crossover
log-transformed data (multiplicative model)

alpha = 0.0294, target power = 0.8
BE margins = 0.8 ... 1.25
Null (true) ratio = 1.0876, CV = 0.182132

Sample size
n power
28 0.813921

α 0.05, observed T/R 108.76%, CV_{intra} 18.2%, 12 subjects in stage 1

Power 53.2% – initiate stage 2

Estimate total sample size:
α 0.0294, T/R 108.76%,
CV_{intra} 18.2%, 80% power

Simulations (n, 12, CV 18.2%, UL 150)
• α_{emp} 0.049681
• power 89.1%

Total sample size 28 (≤150): include another 16 in stage 2
Karalis & Macheras (Expl. a)

- CV assumed as 20%, T/R 95%
 - In a fixed sample design for 80% power sample sizes would be 20 ($\alpha 0.05$) or 24 ($\alpha 0.0294$).
 - The sponsor chooses n_1 24 and UL 100.
 - 10^6 simulations (Potvin C), 10^5 (K & M)

<table>
<thead>
<tr>
<th>method</th>
<th>(overall) power</th>
<th>power (stage 1)</th>
<th>% studies to stage 2</th>
<th>$n_{95%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>90.1</td>
<td>88.1</td>
<td>4.2</td>
<td>24</td>
</tr>
<tr>
<td>Karalis & Macheras</td>
<td>94.8</td>
<td>83.5</td>
<td>11.4</td>
<td>66</td>
</tr>
</tbody>
</table>

- ~Three times as many studies forced to stage 2 with a high probability of large sample sizes.
Karalis & Macheras (Expl. b)

- CV assumed as 40%, T/R 95%
 - Fixed sample design n 66 (α 0.05) or 80 (α 0.0294).
 - The sponsor chooses n₁ 60 and UL 150.
 - 10^6 simulations (Potvin C), 10^5 (K & M)

<table>
<thead>
<tr>
<th>method</th>
<th>(overall) power</th>
<th>power (stage 1)</th>
<th>% studies to stage 2</th>
<th>n₉₅%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potvin et al.</td>
<td>83.6</td>
<td>69.7</td>
<td>23.8</td>
<td>98</td>
</tr>
<tr>
<td>Karalis & Macheras</td>
<td>74.2</td>
<td>67.2</td>
<td>7.2</td>
<td>130</td>
</tr>
</tbody>
</table>

- Power <80%; only ~$\frac{1}{3}$ of studies proceed to stage 2, although with considerably larger sample sizes.

Labes D and H Schütz
An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies: A Rejoinder
Pharm Res (submitted 2013)
Futility Rules revised

- EMA GL Section 4.1.8 ‘Two-stage design’
 “[...] the stopping criteria should be clearly defined prior to the study.”

 - What does that mean?
 - Failing in stage 1 or the pooled analysis according to the chosen method.
 → Part of the validated frameworks.
 - Early stopping for futility (e.g., ‘bad’ ratio, extreme stage 2 sample size caused by high CV – better to opt for reference-scaling...).
 → Not validated. A misunderstanding by regulators (stopping criterion ≠ futility rule).
Futility Rules revised

- Introduction of a futility rule does not inflate the patient’s risk, but power may drop substantially!
 - State stopping criteria unambiguously in the protocol.
 - If you want to introduce a futility rule, simulations are mandatory in order to maintain sufficient power.

“Introduction of [...] futility rules may severely impact power in trials with sequential designs and under some circumstances such trials might be unethical.”

A Fuglsang

Futility Rules in Bioequivalence Trials with Sequential Designs

APPS J 16(19), 79–82 (2014) DOI: 10.1208/s12248-013-9540-0
Advanced Example

- ‘Must pass’ BE in stage 1 (first to file)
 - Fixed T/R 90% (pessimistic; very likely better)
 - Expected CV 20% (pilot study with two references)
 - ~30% expected drop-out rate; start with 88 to have \(n_1 \geq 60 \)
- Targets
 - >90% power for \(n_1 = 60 \) – even for extreme CV of 45%
 - 90% power for \(n_1 \geq 60 \) (CV 20%) in stage 1
 - Not <80% power for CV \(\geq 25\% \) in stage 1
 - Low probability to proceed to stage 2
Advanced Example

- ‘Must pass’ BE in stage 1 (first to file)
 - Sponsor prefered Method B (EU submission…)
 - Fuglsang published $\alpha_{adj.} = 0.0269$ for T/R 0.90 and 90% power – but only for Method C…
 - Same $\alpha_{adj.}$ applicable?
 - Likely…
 - Potvin et al. showed less inflation with Method B.
 - Fuglsang needed less adjustment in Method B.
 - But we have to justify that!
 - 10^6 sim’s for α and 10^5 for power.
 - Thanks to Detlew Labes for R package *Power2Stage*!
Advanced Example

270·10^6 Sim’s (Fuglsang mod. B: T/R 90%, power 90%)

α

CV

n_1

Bioequivalence Studies in Russia: Pharmacokinetics, Statistics and Analytics
Moscow, 24 April 2014
Advanced Example

- **‘Must pass’ BE in stage 1 (first to file)**
 - Targets met
 - 93% power for $n_1 \geq 60$ (CV 20%) and 90% for extreme CV of 45%
 - 90% power for $n_1 \geq 60$ (CV 20%) in stage 1
 - Low chances to proceed to stage 2 with CV 20%:
 - $n_1 = 60$: 6%, $n_1 = 72$: 1%
 - $\geq 80\%$ power for $CV \geq 20\%$, even for a more extreme drop-out rate
 - $\alpha_{adj.} = 0.0271$ would work as well (with 0.0278 < 0.052)
 - Study passed in the first stage (February 2014)
Two-Stage Sequential Designs

TSDs: Parallel Design

- A Fuglsang (2014)
 - Based on Potvin’s Methods B/C ($\alpha_{adj.}$ 0.0294, 80% power)
 - Framework: n_1 48–120, CV 10–100%
 - Explored
 - equal and unequal variances of groups
 - conventional t-test and Welch-Satterthwaite approximation
- Results
 - No significant α-inflation
 - Power ≥ 78.4

A Fuglsang
Sequential Bioequivalence Approaches for Parallel Designs
AAPS J, Epub ahead of print (Feb 2014), DOI: 10.1208/s12248-014-9571-1
Case Study 1 (EMA)

- Method C: Study passed BE in stage 1 (49 subjects, CV 30.65%, 90% CI)
 - UK/Ireland: Unadjusted α in stage 1 not acceptable.
 - Study passed BE with 94.12% CI as well (post hoc switch to Method B).
 - Austria: The Applicant should demonstrate that the type I error inflation, which can be expected from the chosen approach, did not impact on the decision of bioequivalence.
 - One million simulations based on the study’s sample size and CV.
 - α_{emp} 0.0494 (95% CI: 0.0490 – 0.0498)
Case Study 2 (EMA)

- Method C: Study stopped in stage 1
 AUC power >80%: passed BE with 90% CI
 C_{max} power <80%: passed BE with 94.12% CI

 - The Netherlands: Adapting the confidence intervals based upon power is not acceptable and also not in accordance with the EMA guideline. Confidence intervals should be selected *a priori*, without evaluation of the power. Therefore, the applicant should submit the 94.12% confidence intervals for AUC.

 - AUC fails BE with 94.12% CI
 - Sponsor repeated the study with a very (!) large sample size and failed on C_{max}. Project cancelled…
Case Study 3 (EMA)

- Method C: Two studies passed in stage 1
 \((n=15 \text{ SD, } n=16 \text{ MD, } C_{\text{max}} \text{ CV } 17.93\%, 8.54\%, 90\% \text{ CIs}) \)
- Would have passed with Method B as well; however, 94.12\% CIs were not reported.
 - RMS Germany. Accepted by CMSs Austria, Denmark, Sweden, and The Netherlands.
 - Spain: Statistical analysis should be GLM. Please justify.
 - Evaluated with all-fixed effects model.
 Both studies passed.
 Issue resolved (September 2013)
Outlook

- Feasibility / futility rules.
- Arbitrary expected T/R and/or power.
- Methods without interim power.
- Dropping a candidate formulation from a higher-order cross-over; continue with 2×2.
- Full adaptive methods.
- Exact method (not depending on simulations).
- Application to replicate designs / scaling.
Don’t panic!

conventional 2×2 cross-over (fixed sample design)
Thank You!

Two-Stage Sequential Designs

Open Questions?

Helmut Schütz
BEBAC
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at
To bear in Remembrance...

The fundamental cause of trouble in the world today is that the stupid are cocksure while the intelligent are full of doubt.

**Bertrand Russell**

In bioequivalence we must not forget the only important – _the patient_! He/she is living person, not just $\alpha 0.05$.

**Dirk Marteen Barends**

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast. It keeps him young.

**Konrad Lorenz**
References

- ICH
- EMA-CPMP/CHMP/EWP
 - Points to Consider on Multiplicity Issues in Clinical Trials (2002)
 - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2013)
- US-FDA
 - Center for Drug Evaluation and Research (CDER)
 - Statistical Approaches Establishing Bioequivalence (2001)
 - Draft Guidance on Loteprednol (Jun 2012)
 - Draft Guidance on Dexamethasone/Tobramycin (Jun 2012)
 - DB Owen
 - A special case of a bivariate non-central t-distribution
 - Biometrika 52(3/4), 437–46 (1965)
- Diletti E, Hauschke D, and VW Steinijans
 - Sample size determination for bioequivalence assessment by means of confidence intervals
- AL Gould
 - Group Sequential Extension of a Standard Bioequivalence Testing Procedure
 - DOI: 10.1007/BF02353786
- Hauck WW, Preston PE, and FY Bois
 - A Group Sequential Approach to Crossover Trials for Average Bioequivalence
 - DOI: 10.1080/10543409708835171
- Patterson S and B Jones
 - Determining Sample Size, in: Bioequivalence and Statistics in Clinical Pharmacology
- SA Julious
 - Sample Sizes for Clinical Trials
- D Labes
 - http://cran.r-project.org/web/packages/PowerTOST/PowerTOST.pdf
Two-Stage Sequential Designs

References

- D Labes
 Package ‘Power2Stage’, Version 0.0-8 (2014-04-11)
 http://cran.r-project.org/web/packages/Power2Stage/Power2Stage.pdf

- Potvin D et al.
 Sequential design approaches for bioequivalence studies with crossover designs
 DOI: 10.1002/pst.294

- Montague TH et al.
 Additional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’
 Pharmaceut Statist 11(1), 8–13 (2011) DOI: 10.1002/pst.483

- Garcia-Arieta A and J Gordon
 Bioequivalence Requirements in the European Union: Critical Discussion

- BM Davit
 Sequential Designs and Interim Analyses in Bioequivalence: FDA’s Experience
 AAPS Annual Meeting, Chicago, IL, October 13–18, 2012

- A Fuglsang
 Sequential Bioequivalence Trial Designs with Increased Power and Controlled Type I Error Rates
 DOI: 10.1208/s12248-013-9475-5

- Karalis V and P Macheras
 An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies
 DOI: 10.1007/s11095-013-1026-3

- Karalis V and P Macheras
 On the Statistical Model of the Two-Stage Designs in Bioequivalence Assessment
 DOI: 10.1111/jphp.12164

- A Fuglsang
 Futility Rules in Bioequivalence Trials with Sequential Designs

- A Fuglsang
 Sequential Bioequivalence Approaches for Parallel Designs
 AAPS J, Epub ahead of print (Feb 2014)
 DOI: 10.1208/s12248-014-9571-1