

To bear in Remembrance...

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.

Karl R. Popper

Even though it's *applied* science we're dealin' with, it still is – *science*!

Leslie Z. Benet

Assumptions

All models rely on assumptions.

- Bioequivalence as a surrogate for therapeutic equivalance.
 - Studies in healthy volunteers in order to minimize variability (*i.e.*, lower sample sizes than in patients).
 - Current emphasis on *in vivo* release ('human dissolution apparatus').
- Concentrations in the sample matrix reflect concentrations at the target receptor site.
 - In the strict sense only valid in steady state.
 - In vivo similarity in healthy volunteers can be extrapolated to the patient population(s).
- $f = \mu_T / \mu_R$ assumes that
 - $D_T = D_R$ and
 - inter-occasion clearances are constant.

ne ·

Assumptions

All models rely on assumptions.

- Log-transformation allows for additive effects required in ANOVA.
- No carry-over effect in the model of crossover studies.
 - Cannot be statistically adjusted.
 - Has to be avoided by design (suitable washout).
 - Shown to be a statistical artifact in meta-studies.
 - Exception: Endogenous compounds (biosimilars!)
- Between- and within-subject errors are independently and normally distributed about unity with variances σ_s^2 and $\sigma_{e'}^2$.
 - If the reference formulation shows higher variability than the test, the 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - No monocygotic twins or triplets in the study!

Error(s)

All formal decisions are subjected to two 'Types' of Error.

- α: Probability of Type I Error (aka Risk Type I)
- β: Probability of Type II Error (aka Risk Type II)

Example from the justice system – which presumes that the defendant is *not guilty*:

Verdict	Defendant innocent	Defendant guilty
Presumption of innocence <i>rejected</i> (<i>guilty</i>)	wrong	correct
Presumption of innocence accepted (not guilty)	correct	wrong

Hypotheses

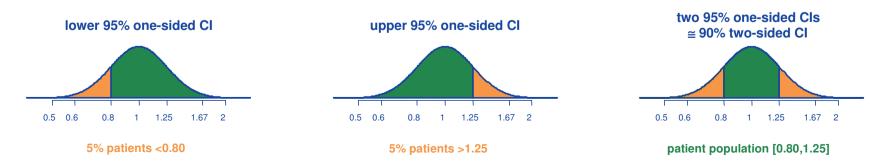
In statistical terminology

- Null hypothesis (H_0) : innocent
- Alternative hypothesis (H_a aka H_1): guilty

Decision	Null hypothesis <i>true</i>	Null hypothesis false
H ₀ rejected	Type I Error	Correct (accept <i>H_a</i>)
Failed to reject <i>H</i> ₀	Correct (accept <i>H</i> ₀)	Type II Error

In BE the Null hypothesis is bioinequivalence ($\mu_T \neq \mu_R$)!

Decision	Null hypothesis <i>true</i>	Null hypothesis false
H ₀ rejected	Patient's risk (α)	Correct (BE)
Failed to reject <i>H</i> ₀	Correct (not BE)	Producer's risk (β)



Type I Error

α : Patient's risk to be treated with an inequivalent formulation (*H*₀ falsely rejected)

- BA of the test compared to reference in a *particular* patient is considered to be risky *either* below 0.80 *or* above 1.25.
 - If we keep the risk of *particular* patients at α 0.05 (5%), the risk of the entire *population* of patients (where BA <0.80 *and* >1.25) is 2α (10%) – expressed as a confidence interval: $100(1 - 2\alpha) = 90\%$.

 However, since in a patient BA cannot be <0.80 and >1.25 at the same time, the patient's risk from a 90% CI is still 5%!

Type II Error

- β: Producer's risk to get no approval of an equivalent formulation (H_0 falsely not rejected)
- Fixed in study planning to $0.1 \le 0.2$ ($10 \le 20\%$), where power = $1 \beta = \ge 80 90\%$.

If all assumptions in sample size estimations turn out to be correct and power was set to 80%,

one out of five studies will fail just by chance!

• A posteriori (post hoc) power is irrelevant! Either a study has demonstrated bioequivalence or not.

Review of Guidelines

Minimum Sample Size.

- 12 WHO, EU, CAN, NZ, AUS, AR, MZ, ASEAN States, RSA, Russia ('Red Book'), EAEU, Ukraine
- USA 'A pilot study that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.'
- 18 Russia (2008)
- 20 RSA (MR formulations)
- 24 Saudia Arabia (12 to 24 if statistically justifiable)
- 24 Brazil; USA (replicate designs intended for RSABE)
- 24 EU (RTR|TRT replicate designs intended for ABEL)
- 'Sufficient number' Japan
- 'Adequate' India

Review of Guidelines

Maximum Sample Size.

- Generally not specified (decided by IEC/IRB and/or local Authorities).
- ICH E9, Section 3.5 states:

'The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed.'

Power vs. Sample Size

It is not possible to *directly* obtain the required sample size.

- The required sample size depends on
 - the acceptance range (AR) for bioequivalence;
 - the error variance (s^2) associated with the PK metrics as estimated from
 - published data,
 - a pilot study, or
 - previous studies;
 - the fixed significance level (α);
 - the expected deviation (Δ) from the reference product and;
 - the desired power (1β) .
- Three values are known and fixed (AR, α, 1 − β), one is an assumption (Δ), and one an estimate (s²). Hence, the correct term is 'sample size estimation'.

Power vs. Sample Size

Only power is accessible.

- The sample size is searched in an iterative procedure until at least the desired power is obtained. Example: α 0.05, target power 80% (β 0.2), expected *GMR* 0.95, *CV*_{intra} 20% \rightarrow
 - minimum sample size 19 (power 81.3%), rounded *up* to the next even number in a $2 \times 2 \times 2$ study (power 83.5%).

n	power (%)
16	73.5
17	76.4
18	79.1
19	81.3
20	83.5

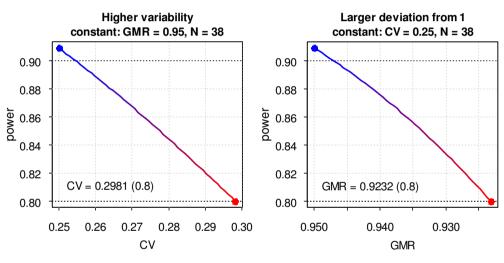
nn -

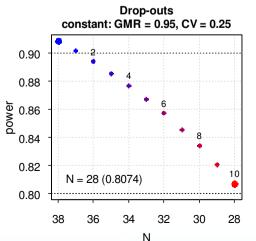
- Exact methods for ABE in parallel, crossover, and replicate designs available.
- Simulations suggested for Group-Sequential and Two-Stage Designs.
- Simulations mandatory for reference-scaling methods.

Power vs. Sample Size

How many subjects are 'enough'?

- Most guidelines recommend 80 90% power.
 - If a study is planned for ≤70% power, problems with the ethics committee are possible (ICH E9).
 - If a study is planned for >90% power (especially with low variability drugs), additional problems with regulators are possible ('forced bioequivalence').
 - Some subjects ('alternates') may be added to the estimated sample size according to the expected drop-out rate – especially for studies with more than two periods or multiple-dose studies.
- According to ICH E9 a sensitivity analysis is mandatory to explore the impact on power if values deviate from assumptions.

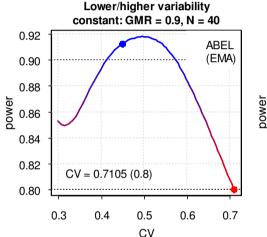


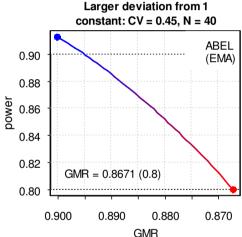

ne ·

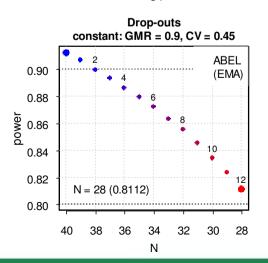
Power Analysis

Example 2×2×2, ABE

- Assumed *GMR* 0.95,
 CV_w 0.25, desired power 0.9,
 min. acceptable power 0.8.
 - Sample size 38 (power 0.909)
 - *CV_w* can increase to 0.298 (rel. +19%)
 - GMR can decrease to 0.923 (rel. -2.8%)
 - 10 drop-outs acceptable (rel. –26%)
 - Most critical is the GMR!

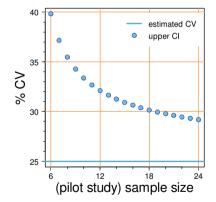





Power Analysis

Example 2×2×4, ABEL

- Assumed *GMR* 0.90,
 CV_{wR} 0.45, desired power 0.9,
 min. acceptable power 0.8.
 - Sample size 40 (power 0.912)
 - *CV_w* can increase to 0.711 (rel. +58%)
 - GMR can decrease to 0.867 (rel. –3.7%)
 - 12 drop-outs acceptable (rel. –30%)
 - Most critical is the GMR!



Dealing with Uncertainty

Nothing is 'carved in stone'.

- Never assume perfectly matching products.
 - Generally a Δ of not better than 5% should be assumed (0.9500 1.0526).
 - For HVD(P)s do not assume a \triangle of <10% (0.9000 1.1111).
- Do not use the CV but one of its confidence limits.
 - Suggested α 0.2 (here: the producer's risk).
 - For ABE the upper CL.
 - For reference-scaling the lower CL.
- Better alternatives.
 - Group-Sequential Designs
 Fixed total sample size, interim analysis for early stopping.
 - (Adaptive) Sequential Two-Stage Designs
 Fixed stage 1 sample size, re-estimation of the total sample size in the interim analysis.

Excursion

Type I Error.

- In BE the Null Hypothesis (H_0) is *inequivalence*.
 - TIE = Probability of falsely rejecting H_0 (*i.e.*, accepting H_a and claiming BE).
 - Can be calculated for the nominal significance level (α) assuming a *GMR* (θ_0) at one of the limits of the acceptance range [θ_1 , θ_2].
 - Example: 2×2×2 crossover, CV 20%, n 20, α 0.05, $\theta_0 = [\theta_1 \ 0.80 \ or \ \theta_2 \ 1.25]$. library(PowerTOST) AR <- c(1-0.20, 1/(1-0.20)) # common acceptance range: 0.80-1.25 power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AR[1]) [1] 0.0499999 power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AR[2]) [1] 0.0499999
 - TOST is not a uniformly most powerful (UMP) test. power.TOST(CV=0.20, n=12, alpha=0.05, theta0=AR[2]) [1] 0.04976374
 - However, the TIE never exceeds the nominal level. power.TOST(CV=0.20, n=72, alpha=0.05, theta0=AR[2]) [1] 0.05

Labes D, Schütz H, Lang B. PowerTOST: Power and Sample size based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. R package version 1.4-2. 2016. <u>https://cran.r-project.org/package=PowerTOST</u>

inactor Laiss

Excursion

Type I Error.

Alternatively perform simulations to obtain an empiric Type I Error. power.TOST.sim(CV=0.20, n=20, alpha=0.05, theta0=AR[2], nsims=1e8)

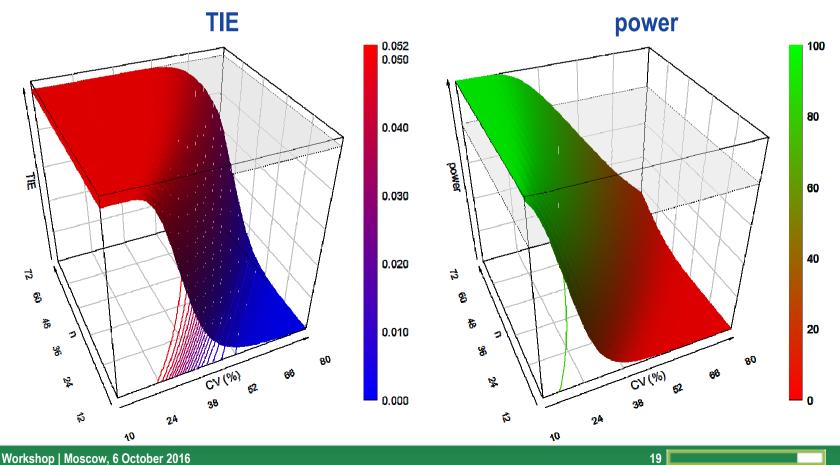
[1] 0.04999703

 In other settings (*i.e.*, frameworks like Two-Stage Designs or reference-scaled ABE) analytical solutions for power – and therefore, the TIE – are not possible: Simulations are required.

0.0502 0.0501 empiric TIE 0.05 0.0499 estimates binned median binned 2.5/97.5 percentiles significance limit (>0.05) nominal a 0.0498 6x10⁷ $2x10^{7}$ 8x10⁴ $4 \times 10^{\prime}$ 1x10[°] n

number of simulations

2×2×2 crossover, CV 0.2, n 20 (theoretical Type | Error 0.04999999 for α 0.05)



Excursion

Type I Error and power.

Fixed sample $2 \times 2 \times 2$ design (α 0.05). *GMR* 0.95, *CV* 10 – 80%, *n* 12 –72

BE ·

Execter

R Package PowerTOST

Examples

- Install the package from CRAN if necessary and attach it.
 - if (!("PowerTOST" %in% installed.packages()[, "Package"])) {
 install.packages("PowerTOST")
 }
 - library(PowerTOST)
- ABE
 - 2×2×2 crossover, CV_{intra} 25%, θ₀ 0.95, targetpower 90%. sampleN.TOST(CV=0.25, theta0=0.95, targetpower=0.9, print=FALSE)[["Sample size"]]
 - [1] 38
 - 2×2×2 crossover, CV_{intra} 10%, NTID (AR 90.00–111.11%), θ₀ 0.95. sampleN.TOST(CV=0.10, theta0=0.95, theta1=0.9, print=FALSE)[["Sample size"]]
 [1] 44
 - Parallel design, CV_{total} 40%, θ_0 0.95.

[1] 130

20

R Package PowerTOST

• ABEL (reference-scaling according to the EMA)

- 4-period full replicate, CV_{wR} 35%, θ_0 0.90.

```
sampleN.scABEL(CV=0.35, theta0=0.90, design="2x2x4", details=TRUE)
Sample size estimation
  (simulation based on ANOVA evaluation)
Study design: 2x2x4 (full replicate)
alpha = 0.05, target power = 0.8
CVw(T) = 0.35; CVw(R) = 0.35
True ratio = 0.9
ABE limits / PE constraint = 0.8 ... 1.25
EMA regulatory settings
- CVswitch
                    = 0.3
- cap on scaBEL if CVw(R) > 0.5
- regulatory constant = 0.76
- pe constraint applied
Sample size search
   power
n
30
    0.7702
32
    0.7929
    0.8118
34
```

21

R Package PowerTOST

- ABEL (reference-scaling according to the EMA, iteratively adjusted α to preserve the consumer risk at ≤0.05: Labes and Schütz 2016)
 - 4-period full replicate, CV_{wR} 35%, θ_0 0.90.

```
sampleN.scABEL.ad(CV=0.35, theta0=0.90, design="2x2x4", details=TRUE)
+++++++++ scaled (widened) ABEL +++++++++
Sample size estimation
for iteratively adjusted alpha'
```

Study design: 2x2x4 (RTRT|TRTR)

Expected CVwR 0.35	
Nominal alpha :	0.05
True ratio :	0.9000
Target power :	0.8
Regulatory settings:	EMA (ABEL)
Switching CVwR :	0.3
Regulatory constant:	
Expanded limits :	
Upper scaling cap :	
PE constraints :	0.8000 1.2500
	0.05000 (power 0.8118), TIE: 0.0656
n 34, adj. alpha:	0.03630 (power 0.7728)
n 38, adj. alpha:	0.03610 (power 0.8100), TIE: 0.05000

22

Sample Size Estimation

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

