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Two-Stage Sequential Designs
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Dealing with Uncertainty

Nothing is ‘carved in stone’.

• Better alternatives.

― Group-Sequential Designs

Fixed total sample size, interim analysis for early stopping.

― (Adaptive) Sequential Two-Stage Designs

Fixed stage 1 sample size, re-estimation of the total sample size

in the interim analysis.

• Do not use the CV but one of its confidence limits.

― Suggested α 0.2 (here: the producer’s risk).

― For ABE the upper CL.

― For reference-scaling the lower CL.
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Dealing with Uncertainty

Group-Sequential Designs.

• Fixed total sample size (N) and – in BE – one interim analysis.

― Requires two assumptions. One ‘worst case’ CV for the total sample size 

and a ‘realistic’ CV for the interim.

― All published methods were derived for superiority testing, parallel 

groups, normal distributed data with known variance, and interim at N/2.

― That’s not what we have in BE: equivalence (generally in a crossover), 

lognormal data with unknown variance. Furthermore, due to drop-outs, 

the interim might not be exactly at N/2 (might inflate the Type I Error).

― Asymmetric split of α is possible, i.e.,

a small α in the interim and a large one in the final analysis.

Examples: Haybittle/Peto (α1 0.001, α2 0.049), O’Brien/Fleming (α1 0.005, 

α2 0.048), Zheng et al. (α1 0.01, α2 0.04).
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Dealing with Uncertainty

(Adaptive) Sequential Two-Stage Designs.

• Fixed stage 1 sample size (n1), sample size re-estimation in the interim.

― Generally a fixed GMR is assumed.

― Fully adaptive methods (i.e., taking also the PE of stage 1 into account)

are problematic. May deteriorate power and require a futility criterion. 

Simulations mandatory.

― Two ‘Types’

1. The same adjusted α is applied in both stages (regardless whether

a study stops in the first stage or proceeds to the second stage).

2. An unadjusted α may be used in the first stage, dependent on interim power.

― All published methods are valid only for a range of combinations of 

stage 1 sample sizes, CVs, GMRs, and desired power.

― Contrary to common believes no analytical proof of keeping the TIE exist. 

It is the responsibility of the sponsor to demonstrate (e.g., in simulations) 

that the consumer risk is preserved.
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Excursion

Type I Error.

• In BE the Null Hypothesis (H0) is inequivalence.

― TIE = Probability of falsely rejecting H0 (i.e., accepting Ha and claiming BE).

― In frameworks like Two-Stage Designs or reference-scaled ABE analytical

solutions for power – and therefore, the TIE – are not possible.

Hence, simulations are required.

– Example: 2×2×2 crossover ‘Type 1’ TSD, CV 20%, n1 12, αadj 0.0294|0.0294,

θ0 = [θ1 0.80 or θ2 1.25], one million studies simulated.
library(Power2Stage)
AR <- c(1-0.20, 1/(1-0.20)) # common acceptance range: 0.80-1.25
power.2stage(CV=0.2, n1=12, alpha=rep(0.0294, 2),

theta0=AR[1], nsims=1e6)$pBE
[1] 0.046508
power.2stage(CV=0.2, n1=12, alpha=rep(0.0294, 2),

theta0=AR[2], nsims=1e6)$pBE
[1] 0.046262

Labes D, Schütz H. Power2Stage: Power and Sample-Size Distribution of 2-Stage Bioequivalence Studies.
R package version 0.4-3. 2015. https://cran.r-project.org/package=Power2Stage
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Excursion

Type I Error and power.

• Fixed sample 2×2×2 design (α 0.05). GMR 0.95, CV 10 – 80%,

n 12 –72
TIE power
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Excursion

Type I Error and power.

• ‘Type 1’ TSD (Potvin Method B, αadj 0.0294). GMR 0.95, CV 10 – 80%,

n1 12 – 72
TIE power
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Excursion

Type I Error and power.

• ‘Type 2’ TSD (Potvin Method C, αadj 0.05|0.0294). GMR 0.95, CV 10 – 80%, 

n1 12 – 72
TIE power
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Group-Sequential Designs

Long and accepted tradition in clinical research (phase III).

• Based on Armitage et al. (1969), McPherson (1974), Pocock (1977), 

O’Brien/Fleming (1979), Lan/DeMets (1983), Jennison/Turnbull (1999), …

― Developed for superiority testing, parallel groups, normal distributed data 

with known variance, and interim at N/2.

― First proposal by Gould (1995) in the field of BE did not get

regulatory acceptance in Europe.

― Asymmetric split of α is possible, i.e.,

― a small α in the interim (i.e., stopping for futility) and

― a large one in the final analysis (i.e., only small sample size penality).

― Examples: Haybittle/Peto (α1 0.001, α2 0.049), O’Brien/Fleming (α1 0.005, α2 0.048).

― Not developed for crossover designs and sample size re-estimation (fixed n1 and 

variable N): Lower α2 or α-spending functions (Lan/DeMets, Jennison/Turnbull) 

may be needed in order to control the Type I Error.

― Zheng et al. (2015) for BE in crossovers (α1 0.01, α2 0.04) keeps the TIE.
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Group-Sequential Designs

Type I Error.

Zheng et al.

α1 0.01, α2 0.04

Maximum 0.04878

Haybittle/Peto

α1 0.001, α2 0.049

O’Brien/Fleming

α1 0.005, α2 0.048

Maximum 0.05849 Maximum 0.05700

α2 0.0413 needed

to control the TIE

α2 0.0415 needed

to control the TIE
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Group-Sequential Designs

Review of Guidelines.

• Australia (2004), Canada (Draft 2009)

― Application of Bonferroni’s correction (αadj 0.025).

― Theoretical TIE ≤0.0494.

― For CVs and samples sizes common in BE the TIE generally is ≤0.04.

• Canada (2012)

― Pocock’s αadj 0.0294.

― n1 based on ‘most likely variance’ + additional subjects

in order to compensate for expected dropout-rate.

― N based on ‘worst-case scenario’.

― If n1 ≠ N/2 relevant inflation of the TIE is possible!

α-spending functions can control the TIE (but are not mentioned

in the guidance).



BE Workshop | Moscow, 6 October 2016 12

(Adaptive) Sequential Two-Stage Designs

Methods by Potvin et al. (2008) first validated framework in 

the context of BE.

• Supported by the ‘Product Quality Research Institute’ (FDA/CDER, 

Health Canada, USP, AAPS, PhRMA…).

• Inspired by conventional BE testing and Pocock’s αadj 0.0294 for GSDs.

― A fixed GMR is assumed (only the CV in the interim is taken into account 

for sample size re-estimation). GMR in the first publication was 0.95; later 

extended to 0.90 by other authors.

― Target power 80% (later extended to 90%).

― Two ‘Types’

1. The same adjusted α is applied in both stages (regardless whether

a study stops in the first stage or proceeds to the second stage).

2. An unadjusted α may be used in the first stage, dependent on interim power.
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(Adaptive) Sequential Two-Stage Designs

Frameworks for crossover TSDs.

• Stage 1 sample sizes 12 – 60, no futility rules.
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• Xu et al. (2015). GMR 0.95, target power 80%, futility for the (1–2α1) CI.
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines and Recommendations.

• EMA (Jan 2010)

― Acceptable.

― αadj 0.0294 = 94.12% CI in both stages given as an example

(i.e., Potvin Method B preferred?)

― “… there are many acceptable alternatives and the choice of how much 

alpha to spend at the interim analysis is at the company’s discretion.”

― “… pre-specified … adjusted significance levels to be used for each of the 

analyses.”

― Remarks

― The TIE must be preserved. Especially important if ‘exotic’ methods are applied.

― Does the requirement of pre-specifying both alphas imply that α-spending 

functions or adaptive methods (where α2 is based on the interim and/or the final 

sample size) are not acceptable?

― TSDs are on the workplan of the EMA’s Biostatistics Working Party for 2016…
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines and Recommendations.

• EMA Q&A Document Rev. 7 (Feb 2013)

― The model for the combined analysis is (all effects fixed):
stage + sequence + sequence(stage) + subject(sequence × stage) +
period(stage) + formulation

― At least two subjects in the second stage.

― Remarks

― None of the publications used sequence(stage);

no poolability criterion – combining is always allowed, even if a significant 

difference between stages is observed.

Simulations performed by the BSWP or out of the blue?

― Modification shown to be irrelevant (Karalis/Macheras 2014). Furthermore, no 

difference whether subjects are treated as a fixed or random term (unless PE >1.20). 

Requiring two subjects in the second stage is unnecessary.
library(Power2Stage)
power.2stage(CV=0.2, n1=12, theta0=1.25)$pBE
[1] 0.046262
power.2stage(CV=0.2, n1=12, theta0=1.25, min.n2=2)$pBE
[1] 0.046262
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines and Recommendations.

• Health Canada

― Potvin Method C recommended (May 2012).

― All simulation methods (B – F) acceptable

(GBHI-meeting, Rockville Sep 2016).

• FDA

― Potvin Method C / Montague Method D recommended (Davit et al. 2013).

― All simulation methods (B – F) acceptable

(GBHI-meeting, Rockville Sep 2016).

• Russia (2013)

― Acceptable (Potvin Method B preferred?)
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(Adaptive) Sequential Two-Stage Designs

Futility Rules.

• Futility rules (for early stopping) do not inflate the TIE,

but may deteriorate power.

― State stopping criteria unambiguously in the protocol.

― Simulations are mandatory in order to assess whether power is sufficient:

Introduction of […] futility rules may severely impact power in trials with

sequential designs and under some circumstances such trials might be

unethical. Fuglsang, 2014

[…] before using any of the methods […], their operating characteristics

should be evaluated for a range of values of n1, CV and true ratio of means

that are of interest, in order to decide if the Type I error rate is controlled,

the power is adequate and the potential maximum total sample size is not

too great. Jones andKenward, 2014

― Simulations straightforward with current software.

― Finding a suitable αadj and validating for TIE and power takes ~20 minutes

with the open source R-package Power2Stage.
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(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

• Consider certain questions:

― Is it possible to assume a best/worst-case scenario?

― How large should the size of the first stage be?

― How large is the expected average sample size in the second stage?

― Which power can one expect in the first stage and the final analysis?

― Will introduction of a futility criterion substantially decrease power?

― Is there an unacceptable sample size penalty compared to a

fixed sample design?
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(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

• Example:

― Expected CV 20%, target power is 80% for a GMR of 0.95.

Comparison of a ‘Type 1’ TSD with a fixed sample design (n 20, 83.5% power).

+15.087.012.879.87.387.223.022

8.5
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25.7

34.1

44.5

56.4

Studies in

stage 2 (%)

88.0
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84.2

Final
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n1
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41.3

Power in

stage 1 (%)

3.0

2.3

Studies failed

in stage 1 (%)

20.0

20.6

E[N]

+0.2

+2.9

Increase of

costs (%)
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(Adaptive) Sequential Two-Stage Designs

Conclusions.

• Do not blindly follow guidelines.

Some current recommendations may inflate the patient’s risk and/or 

deteriorate power.

• GSDs and TSDs are both ethical and economical alternatives

to fixed sample designs.

• Recently the EMA’s BSWP – unofficially! – expressed some concerns 

about the validity of methods based on simulations.

• Published frameworks can be applied without requiring the sponsor

to perform own simulations – although they could further improve power 

based on additional assumptions.
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The EMA’s concerns

Simulations vs. ‘analytical proof’.

• In principle regulators prefer methods where control of the TIE

can be shown analytically.

― Promising zone approach (Mehta and Pocock 2011).

Wrong Superiority / parallel groups / equal variances.

Critized by Emerson et al. (2011).

― Inverse normal method (Kieser and Rauch 2015).

Wrong Not a proof but a claim. Slight inflation of the TIE (0.05026)

in the supplementary material’s simulations.

― Repeated confidence intervals (Bretz et al. 2009).

Adapted for bioequivalence (König et al. 2014, 2015).

Correct But only two posters about BE so far

(not published in a peer-reviewed journal).

• Either a proof exists (but not for the conditions in BE)

or it is not published yet.
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The EMA’s concerns

Simulations vs. ‘analytical proof’.

• Summer Symposium ‘To New Shores in Drug Development

Implementing Statistical Innovation’, Vienna, 27 Juni 2016

― Most proofs start with …

Let us assume parallel groups of equal sizes and

normal distributed data with means of 0 and variances of 1

… followed by some fancy formulas.

Do these cases ever occur in reality? Peter Bauer

• Is the BSWP not aware that rounding already inflates the TIE?
sprintf("%.5f%%", 100*CI.BE(pe=1.08076182, CV=0.30, n=24)[2])
[1] "125.00495%"
sprintf("%.2f%%", 100*CI.BE(pe=1.08076182, CV=0.30, n=24)[2])
[1] "125.00%"
sprintf("%.5f%%", 100*CI.BE(pe=1.08076182, CV=0.30, n=24,

alpha=0.0500434)[2])
[1] "125.00000%"
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(Adaptive) Sequential Two-Stage Designs

Outlook.

• Selecting a candidate formulation from a higher-order crossover; 

continue with 2×2×2 in the second stage.

• Fully adaptive methods (taking the PE of stage 1 into account –

without jeopardizing power).

• Exact methods (not relying on simulations).

• Continue a 2×2×2 TSD in a replicate design for reference-scaling.
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Thank You!

Open Questions?

Helmut Schütz

BEBAC
Consultancy Services for

Bioequivalence and Bioavailability Studies

1070 Vienna, Austria

helmut.schuetz@bebac.at

Two-Stage Sequential Designs

http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:helmut.schuetz@bebac.at
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