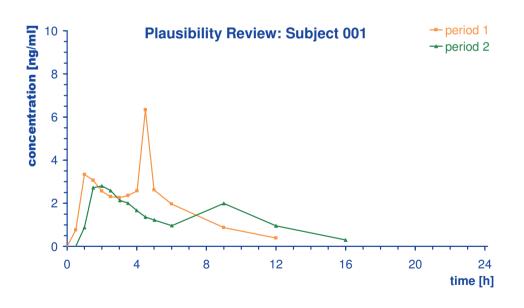
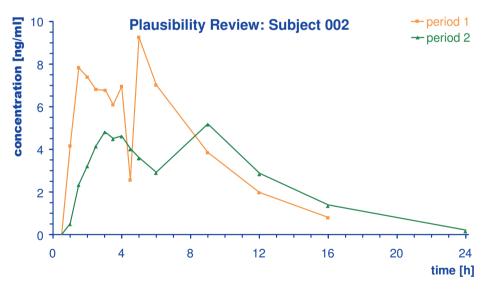


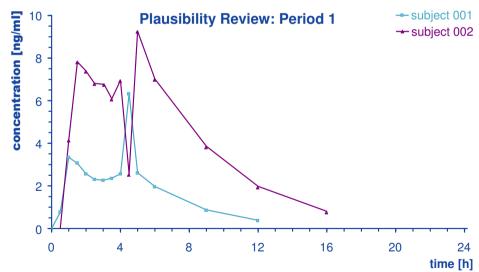
Case Studies


Helmut Schütz



Sample mix-up.

Very large CRO (study performed in 2008). Common drug, biphasic MR formulations, pilot study (suboptimal sampling between 6 – 14 h).



Sample mix-up.

- Barcode-system out of order in the first period.
- No bail-out procedure (e.g., four eyes principle).
- Suspected sample mix-up at 4.5 h.
- Concentrations confirmed.
- No deviation documented in clinical phase.
- Drug has very low intrasubject CV ($AUC \le 10\%$, C_{max} 10–15%) and high intersubject CV (>50%) due to polymorphism.

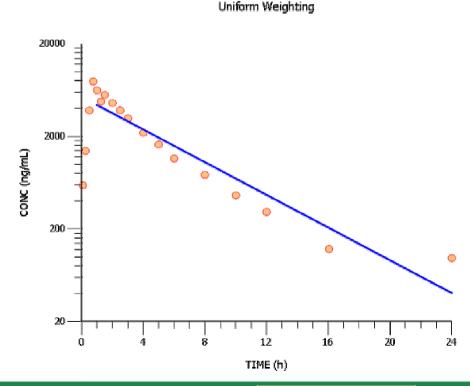
- Pivotal studies are generally performed in only 14 subjects.
- A single mixed-up sample close to t_{max} could ruin an entire study.

Sample mix-up.

- We tried to confirm the mix-up by comparing lab-values of the suspect samples (and each of the two neighbouring ones in each profile).
 - Anticoagulant was citrate for GC/MS.
 - With this anticoagulant the analyzer was validated only for γ -GT and albumine.

subject	time [h]	analyte [ng/ml]	γ-GT [U/I]	albumine [g/dl]	
001	4.0	2.572	13	3.8	
001	4.5	6.330	9	3.5	
001	5.0	2.615	14	3.9	
002	4.0	6.956	9	3.4	
002	4.5	2.561	14	4.0	
002	5.0	9.262	8	3.4	

- γ-GT and albumine showed a similar pattern like the analyte.
 - Mean values of γ -GT in the pre- and post-study lab exams were 14 U/dI (# 001) and 9 U/dI (# 002). Means of albumine were 3.9 g/dI (# 001) and 3.4 g/dI (# 002).
 - Luckily subjects differed in their values. Pilot study only supportive...

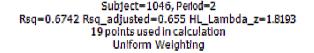

Sample mix-up.

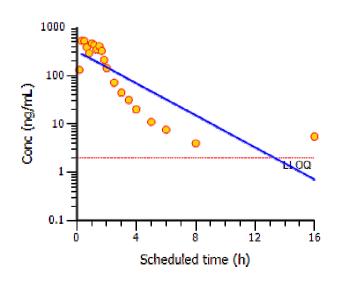
- Before the current EMA GLs a blind plausibility review was acceptable (and still is in many regulations like the FDA).
- According to the current EMA GLs re-analyzing of samples is not permitted.
 - Gerald Beuerle of TEVA/ratiopharm (joint EGA/EMA workshop, London 2010)
 presented an example were due to a single mix-up a study would pass.
 - » The study would fail to show BE if the results were exchanged.
 - » The study would fail to show BE if the two subjects were excluded.
 - » Panelists of the EMA's PKWP confirmed that either procedure is not acceptable and the values have to be used as the are (i.e., the study would pass).
 - Helmut Schütz: 'The EMA is a Serious Risk to Public Health!'
- At the 2nd International Conference of the Global Bioequivalence Harmonization Initiative (Rockville, 15 16 September 2016) Session IV was devoted to the issue (*Exclusion of PK Data in the Assessment of IR and MR Products*).

NCA (estimating λ_z).

- Very large sponsor & CRO (study performed in 2011). Common drug, IR formulation. New sensitive method. PK followed a 2- or 3-compartment model in all subjects.
 - No plots and range of time points used in the estimation given in the report.
 - I had to get them from reported half-lives by trial and error.
 - What was likely going on here and even more important why?

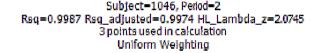
14 points used in calculation

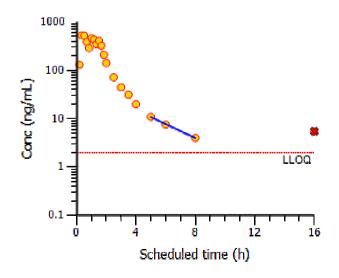

NCA (estimating λ_z).


- Very large sponsor & CRO (study performed in 2011). Common drug, IR formulation. New sensitive method. PK followed a 2- or 3-compartment model in all subjects.
 - Since this is an 'old' drug, the literature and the label/SmPC gives the half-life with one to four hours.
 - This range of half-lives was established in the 1980s by HPLC/UV.
 Only the first (distribution) phase could be detected.
 - With LC/MS-MS a second (and in some subjects a third) slower phase is apparent due to better LLOQ.
 - What I assume:
 - The median reported half-life was 4.61 h (2.49 8.34 h, 54 profiles).
 - If including fewer (i.e., only later) time-points I got 5.05 h (2.78 8.34 h).
 - Both methods give no problems with residual AUCs (max. 6.2% of AUC_m).
 - Anticipatory obedience (avoiding to report / discuss 'long' half-lives)?

NCA (estimating λ_z).

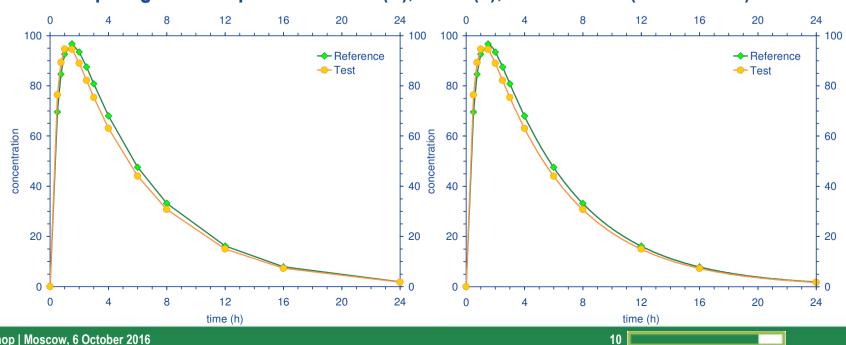
- Large CRO (study performed in 2013). 4-period full replicate; the double peak is specific for the formulation.
 - In four cases the last concentration was increasing. The CRO followed EMA's GLs and did not re-analyze samples (PK reason alone not sufficient). Obviously the CRO tried to 'save' the profiles by including more data points...
 - To the right the most extreme case.
 - Two samples (at 10 & 12 h) were BLQ.
 - 5.47 ng/mL (~2.7× LLOQ) at 16 h.
 - The first time point for the estimation of λ_z was t_{max} .





NCA (estimating λ_z).

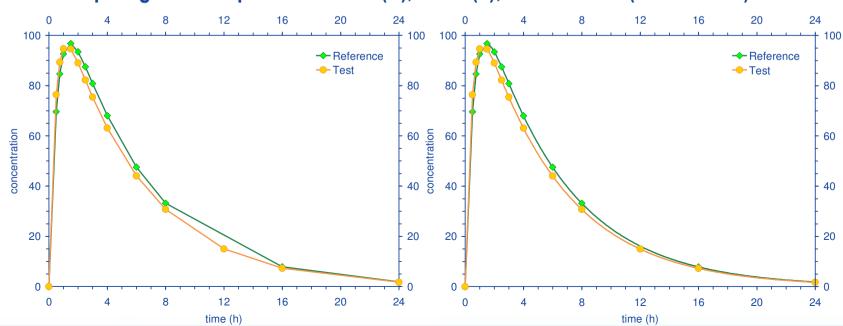
- What I would do (if an SOP allows that). Two options:
 - Exclude the doubtful value from the estimation of λ_z . Justifications:
 - The estimated half-life of 2.07 h is consistent with the ones of the same subject in the other periods (2.12, 2.00, 2.16 h).
 - » Two values before the doubtful value were BLQ which agrees with the predicted λ_7 .
 - Drop the profile from the AUC comparison, but keep C_{max} (higher variability anyway and referencescaling intended in the protocol).



NCA (trapezoidal methods).

- If all samples are available, there is practically no difference between algorithms.
 - Simulated data. AUC 697.8 (Reference), 662.9 (Test), true GMR 95.00%.
 - **Linear trapezoidal:**

- 707.6 (R), 670.9 (T); GMR 94.85% (bias -0.20%).
- Lin-up / log-down trapezoidal: 693.7 (R), 658.0 (T); GMR 94.89% (bias -0.16%).



NCA (trapezoidal methods).

- If a sample is missing (e.g., vial broken in centrifugation), the chosen algorithm matters. 12 h sample (R) removed.
 - Simulated data. AUC_∞ 697.8 (Reference), 662.9 (Test), true GMR 95.00%.
 - Linear trapezoidal:

- 725.1 (R), 670.9 (T); GMR 92.53% (bias -2.60%).
- Lin-up / log-down trapezoidal: 693.7 (R), 658.0 (T); GMR 94.89% (bias –0.15%).

Case Studies

Thank You! Questions in the Panel Discussion.

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at

