Introduction to Biostatistics (2/3: Basic Designs for BE Studies)



Commons Attribution-ShareAlike 3.0 Unportec

eative

Kumar

# BIOSERISEICS Part II: Easic Designs

#### ior Bioecjuivalence Studies

#### Helmui Schüiz BEBAC

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

Commo

**Wikimedia** 



## Designs

•The more 'sophisticated' a design is, the more information (in terms of variances) we may obtain.

Hierarchy of designs:

Full replicate (TRTR | RTRT) 🏷

Partial replicate (TRR | RTR | RRT) →

Standard 2×2 cross-over (RT | TR) ⇒

Parallel (R | T)

π ε χ ε

Power

ε χ ε



## Designs

Parallel Groups (patients, long half-life drugs)
Cross-over (generally healthy subjects)
Standard 2×2×2
Higher Order Designs (more than two formulations)
Latin Squares
Variance Balanced Designs (Williams' Designs)
Incomplete Block Designs
Replicate designs



#### Parallel design (independent groups)

#### Two-group parallel design

#### Advantages

- Clinical part sometimes faster than X-over.
- Straigthforward statistical analysis.
- Drugs with long half life.
- Potentially toxic drugs or effect and/or AEs unacceptable in healthy subjects.
- Studies in patients, where the condition of the disease irreversibly changes.

#### Disadvantages

χ ε

- Lower statistical power than X-over (*rule of thumb:* sample size should at least be doubled).
- Phenotyping mandatory for drugs showing polymorphism.

ε Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### Two-Group Parallel Design







- One group is treated with the test formulation and another group with reference.
- •Quite common that the dataset is imbalanced, *i.e.*,  $n_1 \neq n_2$ .
- Guidelines against the assumption of equal variance.
   Not implemented in PK software (Phoenix/WNL, Kinetica)!

| Subj.          | Group 1 (T) | Group 2 (R) |
|----------------|-------------|-------------|
| 1-13           | 100         | 110         |
| 2-14           | 103         | 113         |
| 3-15           | 80          | 96          |
| 4-16           | 110         | 90          |
| 5-17           | 78          | 111         |
| 6-18           | 87          | 68          |
| 7-19           | 116         | 111         |
| 8-20           | 99          | 93          |
| 9-21           | 122         | 93          |
| 10-22          | 82          | 82          |
| 11-23          | 68          | 96          |
| 12-24          | NA          | 137         |
| n              | 11          | 12          |
| mean           | 95          | 100         |
| S <sup>2</sup> | 298         | 314         |
| S              | 17.3        | 17.7        |

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011





Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



- But we want a ratio, not a difference! Now we have only -7.6 ≤ [T-R = -5] ≤ +17.6...
  Maybe we can use (R-7.6)/R and (R+17.6)/R to get a Cl of 92.4% - 117.6%?
- No. Let's repeat the analysis with logtransformed data.



| Subj.          | Group 1 (T) | ln (T)  | Group 2 (R) | ln (R)  |
|----------------|-------------|---------|-------------|---------|
| 1-13           | 100         | 4.605   | 110         | 4.700   |
| 2-14           | 103         | 4.635   | 113         | 4.727   |
| 3-15           | 80          | 4.382   | 96          | 4.564   |
| 4-16           | 110         | 4.700   | 90          | 4.500   |
| 5-17           | 78          | 4.357   | 111         | 4.710   |
| 6-18           | 87          | 4.466   | 68          | 4.220   |
| 7-19           | 116         | 4.754   | 111         | 4.710   |
| 8-20           | 99          | 4.595   | 93          | 4.533   |
| 9-21           | 122         | 4.804   | 93          | 4.533   |
| 10-22          | 82          | 4.407   | 82          | 4.407   |
| 11-23          | 68          | 4.220   | 96          | 4.564   |
| 12-24          | NA          | NA      | 137         | 4.920   |
| n              | 11          | 11      | 12          | 12      |
| mean           | 95          | 4.539   | 100         | 4.591   |
| S <sup>2</sup> | 298         | 0.03418 | 314         | 0.03231 |
| S              | 17.3        | 0.1849  | 17.7        | 0.1798  |

 $s_0^2 = \frac{10 \cdot 0.03418 + 11 \cdot 0.03231}{10 + 11 - 2} =$ = 0.03320  $s_0 = \sqrt{s_0^2} = \sqrt{0.03320} = 0.1812$  $CI_{\text{ln}} = 0.05203 \pm 1.721 \cdot 0.1822 \cdot 0.4174 =$ = [-0.1829, +0.07886]  $CI = e^{[-0.1829, +0.07886]} = [83.28\%, 108.20\%]$ 

ε Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



•Not finished yet...

- Analysis still assumed equal variances (against GLs)!
- Degrees of freedom for the *t*-value have to be modified, *e.g.*, by the Welch-Satterthwaite approximation.  $(2^2 + 2^2)^2$





•Instead of the simple  $v = n_1 + n_2 - 2 = 21$ , we get  $v = \frac{\left(\frac{0.03418}{11} + \frac{0.03231}{12}\right)^2}{\frac{0.001169}{121 \cdot 12} + \frac{0.001044}{144 \cdot 13}} = 20.705$ 

Maybe it's time to leave M\$-Excel.Easy to calculate in R.



```
> <- c(100,103,80,110,78,87,116,99,
122,82,68)
R <- c(110,113,96,90,111,68,111,93,
93,82,96,137)
par.equal1 <- t.test(log(R), log(T),
alternative="two.sided", mu=0,
paired=FALSE, var.equal=TRUE,
conf.level=0.90)
par.equal1
Two Sample t-test
```

```
data: log(T) and log(R)
t = 0.684, df = 21, p-value = 0.5015
alternative hypothesis: true
difference in means is not equal to 0
90 percent confidence interval:
-0.1829099 0.0788571
sample estimates:
mean of x mean of y
4.538544 4.590570
round(100*exp(par.equal1$conf.int),
digits=2)
83.28 108.20
liberal!
```

```
data: log(T) and log(R)
t = 0.6831, df = 20.705, p-value = 0.5021
alternative hypothesis: true difference
in means is not equal to 0
90 percent confidence interval:
-0.18316379 0.07911102
sample estimates:
mean of x mean of y
4.538544 4.590570
round(100*exp(par.equal0$conf.int),
digits=2)
83.26 108.23
```



- There was just a minor difference (83.28% 108.20% vs. 83.26% 108.23%), but there was also only little imbalance in the dataset  $(n_1 \ 11, n_2 \ 12)$  and the variances were quite similiar  $(s_1^2 \ 0.03418, s_2^2 \ 0.03231)$ .
- If a dataset is more imbalanced and the variances are 'truely' different, the outcome may be substantially different. Generally the simple t-test is liberal, *i.e.*, the patients' risk is increased!

**ε** χ



#### One million simulated BE studies

- Lognormal distribution
- Mean<sub>Test</sub> 95, Mean<sub>Reference</sub> 100 (target ratio 95%)
- CV%<sub>Test</sub> 25%, CV%<sub>Reference</sub> 40% ('bad' reference or inhomogenous groups)
- n<sub>Test</sub> 24, n<sub>Reference</sub> 20

- If width of CI (*t*-test) < CI (Welch-test) the outcome was considered 'liberal'
- Result: *t*-test for homogenous variances was liberal in 97.62% of cases...



```
set.seed(1234567) # Use this line only to reproduce a run
        <- 1E6 # Number of simulations (1 mio simulations will take a couple of minutes)
sims
nT <- 24 # Subjects in test group
nR <- 20 # Subjects in reference group
MeanT <- 95 # Mean test (original scale)
MeanR <- 100 # Mean reference (original scale)
        <- 0.25 # CV test 25%
CVT
                   # CV (bad) reference 40%
CVR
         <- 0.40
MeanlogT<- \log(MeanT) - 0.5*\log(1+CVT^2) # Centered means log scale
MeanlogR<- log(MeanR) - 0.5*log(1+CVR^2)
SDlogT <- sqrt(log(1+CVT^2))</pre>
                                          # Standard dev. log scale
SDlogR <- sqrt(log(1+CVR^2))</pre>
Conserv <- 0
                   # Counters
Liberal <- 0
for (iter in 1:sims){
         <- rlnorm(n=nT, mean=MeanlogT, sd=SDlogT) # simulated T</pre>
  РКТ
           <- rlnorm(n=nR, mean=MeanlogR, sd=SDlogR) # simulated R
  PKR
  TtestRes<- t.test(log(PKR), log(PKT), var.equal=TRUE, conf.level=0.90)
  welchRes<- t.test(log(PKR), log(PKT), var.equal=FALSE, conf.level=0.90)</pre>
  widthT <- abs(TtestRes$conf.int[1] - TtestRes$conf.int[2])</pre>
  widthw <- abs(welchRes$conf.int[1] - welchRes$conf.int[2])</pre>
  if (widthT<widthw){
    Liberal <- Liberal + 1
    }else{
    Conserv < - Conserv + 1
  }
}
result <- paste(paste("t-test compared to welch-test\n"),</pre>
            paste("Conservative =", 100*Conserv/sims, "%\n"),
            paste("Liberal =", 100*Liberal/sims, "%\n"),
            paste("Number of simulations =", sims, "\n"))
cat(result)
```

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

ε

χ ε



#### Paired design (dependent groups)

- Every subject is treated both with test and reference.
- Generally more powerful than parallel design, because every subject acts as their own reference.
- CI is based on within- (aka intra-) subject variance rather than on between- (aka inter-) subject variance.

| Subj.                  | Test | Ref. | S <sup>2</sup> within |
|------------------------|------|------|-----------------------|
| 1                      | 100  | 110  | 50                    |
| 2                      | 103  | 113  | 50                    |
| 3                      | 80   | 96   | 128                   |
| 4                      | 110  | 90   | 200                   |
| 5                      | 78   | 111  | 545                   |
| 6                      | 87   | 68   | 181                   |
| 7                      | 116  | 111  | 13                    |
| 8                      | 99   | 93   | 18                    |
| 9                      | 122  | 93   | 421                   |
| 10                     | 82   | 82   | 0                     |
| 11                     | 68   | 96   | 392                   |
| 12                     | 95   | 137  | 882                   |
| n                      | 12   | 12   | 12                    |
| mean                   | 95   | 100  | 240                   |
| S <sup>2</sup> between | 271  | 314  |                       |
| S <sub>between</sub>   | 16.4 | 17.7 |                       |

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

ε



## **Paired design**

| Subj.                  | In (Test) | In (Ref.) | ∆ (T–R)  | (∆-mean)²             |
|------------------------|-----------|-----------|----------|-----------------------|
| 1                      | 4.605     | 4.700     | -0.095   | 0.00199               |
| 2                      | 4.635     | 4.727     | -0.093   | 0.00176               |
| 3                      | 4.382     | 4.564     | -0.182   | 0.01731               |
| 4                      | 4.700     | 4.500     | +0.201   | 0.06321               |
| 5                      | 4.357     | 4.710     | -0.353   | 0.09125               |
| 6                      | 4.466     | 4.220     | +0.246   | 0.08830               |
| 7                      | 4.754     | 4.710     | +0.044   | 0.00899               |
| 8                      | 4.595     | 4.533     | +0.063   | 0.01283               |
| 9                      | 4.804     | 4.533     | +0.271   | 0.10379               |
| 10                     | 4.407     | 4.407     | ±0.000   | 0.00258               |
| 11                     | 4.220     | 4.564     | -0.345   | 0.08649               |
| 12                     | 4.554     | 4.920     | -0.366   | 0.09945               |
| n                      | 12        | 12        | Σ -0.609 | Σ 0.57794             |
| mean                   | 4.540     | 4.591     | -0.0507  |                       |
| S <sup>2</sup> between | 0.03110   | 0.03231   | 0.0525   | S <sup>2</sup> within |
| S <sub>hetween</sub>   | 0.1763    | 0.1798    | 0.2292   | S <sub>within</sub>   |

$$\overline{\Delta} = \frac{1}{n} \sum_{i=1}^{i=n} (T_i - R_i) = -\frac{0.609}{12} = -0.05075$$

$$s_{\Delta}^2 = \frac{1}{n-1} \sum_{i=1}^{i=n} (T_i - R_i - \overline{\Delta})^2 = \frac{0.57794}{11} = 0.05254$$

$$s_{\Delta} = \sqrt{s_{\Delta}^2} = \sqrt{0.05254} = 0.2292$$

$$CI_{\ln} = \overline{\Delta} \pm t_{2\alpha,n-1} s_{\Delta} \sqrt{\frac{1}{n}} =$$

$$= -0.05075 \pm 1.796 \cdot 0.2292 \sqrt{\frac{1}{12}} = / \begin{array}{c} \text{Parallel:} \\ \text{B3.28\%, 108.20\%} \\ = [-0.16958, +0.06808] \end{pmatrix}$$

$$CI = e^{[-0.16958, +0.06808]} = [84, 40\%, 107, 05\%]$$

ε Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



## Paired vs. parallel design

- Only small difference (84.40% 107.50% vs. parallel 83.28% 108.20%) since based on simulated data not accounting for different CVs (*intra vs. inter*-subject).
- Let's have a look at real data; subsets of the MPH dataset of 405 subjects.
  - 48 subjects parallel: 95.86% [75.89% 121.10%]
    First 12 subjects paired: 100.82% [94.91% 107.09%]
    Second 12 subjects paired: 91.15% [86.81% 95.71%]
    Width of CI of the parallel design is only ~¼ of the paired! Reason: CV<sub>intra</sub> ~7%, CV<sub>inter</sub> ~28%.

8



#### R code

cat(result)

```
#Example MPH 20mg MR AUCinf
T <- c(28.39,49.42,36.78,33.36,34.81,24.29,
       28.61,45.54,59.49,28.23, 25.71,42.30,
       62.14,19.69,42.36,97.43,48.57,75.97,
       67.93,79.22,61.68,90.80,60.64,89.91)
R <- c(35.44,39.86,32.75,33.40,34.97,24.65,</pre>
       31.77,45.44,65.29,27.87,24.26,37.01,
       63.94,20.65,43.03,115.63,57.40,69.02,
       73.98,91.47,79.65,92.86,70.46,101.40)
#Parallel log-scale (n=48)
par <- t.test(log(T), log(R),
         alternative="two.sided", mu=0,
         paired=FALSE, var.equal=FALSE,
         conf.level=0.90)
result <- paste(paste(</pre>
            Back transformed (raw data scale)n'',
          "Point estimate:".
          round(100*exp(par$estimate[1]-
            par$estimate[2]).
            digits=2),"%\n"),
          round(100*exp(par$estimate[1]-
            par$estimate[2]).
            digits=2), "%n"),
          paste("90 % confidence interval:"),
          paste(round(100*exp(par$conf.int[1]),
            digits=2), "% to"),
          paste(round(100*exp(par$conf.int[2]),
            digits=2),"%\n"))
par
cat(result)
```

```
#Paired first 12 subjects (using first dataset)
       <- T[1:12]; R1 <- R[1:12]
т1
pair1 <- t.test(log(T1), log(R1),alternative="two.sided",</pre>
            mu=0, paired=TRUE, conf.level=0.90)
result <- paste(paste" Back transformed (raw data scale)\n",
                 "Point estimate:.
                round(100*exp(pair1$estimate),
                digits=2), "%\n"),
          paste("90 % confidence interval:"),
          paste(round(100*exp(pair1$conf.int[1]),
            digits=2), "% to"),
          paste(round(100*exp(pair1$conf.int[2]),
            digits=2),"%\n"))
pair1
cat(result)
#Paired second 12 subjects (using first dataset)
       <- T[13:24]; R2 <- R[13:24]
т2
pair2 <- t.test(log(T2), log(R2),alternative="two.sided",</pre>
            mu=0, paired=TRUE, conf.level=0.90)
result <- paste(paste" Back transformed (raw data scale)\n",</pre>
                 "Point estimate:,
                round(100*exp(pair2$estimate),
                digits=2)."%\n").
           paste("90 % confidence interval:"),
           paste(round(100*exp(pair2$conf.int[1]),
             digits=2), "% to"),
           paste(round(100*exp(pair2$conf.int[2]),
             digits=2),"%\n"))
pair2
```

```
ε
χ
ε
```

Biostatistics: Basic concepts & applicable principles for various designs **77** Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### **R's results**

Welch Two Sample t-test

data: log(T) and log(R) t = -0.3036, df = 45.69, p-value = 0.7628 alternative hypothesis: true difference in means is not equal to 0 90 percent confidence interval: -0.2759187 0.1914053 sample estimates: mean of x mean of y 3.840090 3.882346

Back transformed (raw data scale)
Point estimate: 95.86 %
90 % confidence interval: 75.89 % to 121.1 %

εχε

Paired t-test

Back transformed (raw data scale)
Point estimate: 100.82 %
90 % confidence interval: 94.91 % to 107.09 %

#### Paired t-test

data: log(T2) and log(R2) t = -3.4076, df = 11, p-value = 0.00585 alternative hypothesis: true difference in means is not equal to 0 90 percent confidence interval: -0.14147665 -0.04381995 sample estimates: mean of the differences -0.0926483

Back transformed (raw data scale) Point estimate: 91.15 % 90 % confidence interval: 86.81 % to 95.71 %

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge
 in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### **Cross-over designs** Standard 2×2×2 Design Period Π **RANDOMIZATI** Sequence 1 Reference Test WASHOU<sup>-</sup> Subjects Sequence 2 Reference Test

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



- Every subject is treated both with test and reference.
- Subjects are randomized into two groups; one is receiving the formulations in the order RT and the other one in the order TR. These two orders are called sequences.
- •Whilst in a paired design we must rely on the assumption that no external influences affect the periods, a cross-over design will account for that.

Biostatistics: Basic concepts & applicable principles for various designs <sup>Edge</sup> in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



### Cross-over design: Model

#### Multiplicative Model (X-over without carryover)

 $X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$ 

*X<sub>ijk</sub>*: *In*-transformed response of *j*-th subject  $(j=1,...,n_i)$  in *i*-th sequence (i=1,2) and *k*-th period (k=1,2),  $\mu$ : global mean,  $\mu_i$ : expected formulation means  $(l=1,2: \mu_1=\mu_{test}, \mu_2=\mu_{ref.})$ ,  $\pi_k$ : fixed period effects,  $\Phi_i$ : fixed formulation effects  $(l=1,2: \Phi_1=\Phi_{test}, \Phi_2=\Phi_{ref.})$ 

8



#### Cross-over design: Assumptions

Multiplicative Model (X-over without carryover)

$$X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$$

• All  $ln\{s_{ik}\}$  and  $ln\{e_{ijk}\}$  are independently and normally distributed about unity with variances  $\sigma_s^2$  and  $\sigma_e^2$ .

- This assumption may not hold true for all formulations; if the reference formulation shows higher variability than the test formulation, a 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
  - This assumption should not be a problem, unless you plan to include twins or triplets in your study...

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### Standard 2×2×2 design

- Advantages
  - Globally applied standard protocol for bioequivalence, PK interaction, food studies
  - Straigthforward statistical analysis
- Disadvantages
  - Not suitable for drugs with long half life ( $\rightarrow$  parallel groups)
  - Not optimal for studies in patients with instable diseases (
     → parallel groups)
  - Not optimal for HVDs/HVDPs (→ Replicate Designs)



### **Cross-over design:** Evaluation

- Mainly by ANOVA and LMEM (linear mixed effects modeling). Results are identical for balanced datasets, and differ only slightly for imbalanced ones.
- Avoid M\$-Excel! Almost impossible to validate; tricky for imbalanced datasets – a nightmare for higher-order X-overs. Replicates impossible.
  Suitable software: SAS, Phoenix/WinNonlin, Kinetica and EquivTest/PK (both only 2x2 Xover), S+, Package *bear* for R (freeware).

ε

R



### **Cross-over design:** Example

| _ |         |        |        | 7       |        |        |
|---|---------|--------|--------|---------|--------|--------|
|   |         | sequer | nce RT |         | sequer | nce TR |
|   | subject | PI     | ΡII    | subject | ΡI     | ΡII    |
| 2 | 2       | 39.86  | 49.42  | 1       | 28.39  | 35.44  |
| 3 | 3       | 32.75  | 36.78  | 4       | 33.36  | 33.40  |
| ) | 5       | 34.97  | 34.81  | 6       | 24.29  | 24.65  |
|   | 8       | 45.44  | 45.54  | 7       | 28.61  | 31.77  |
| 5 | 10      | 27.87  | 28.23  | 9       | 59.49  | 65.29  |
| 2 | 11      | 24.26  | 25.71  | 12      | 42.30  | 37.01  |
|   |         |        |        |         |        |        |

Ordered by treatment sequences (RT|TR)

ANOVA on log-transformed data  $\rightarrow$ 

28.39 35.44 2 39.86 49.42 3 32.75 36.78 4 33.36 33.40 5 34.97 34.81 6 24.29 24.65 28.61 31.7 8 45.44 45.54 9 59.49 65.29 10 27.87 28.23 11 24.26 25.71 12 42.30 37.01

subject

Biostatistics: Basic concepts & applicable principles for various designs **7** Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 - 30 January 2011



#### **Cross-over design:** Example

| Sequence      |                  | Peric             | od 1                               |          | Period 2                          |        | Sec            | uence mean |
|---------------|------------------|-------------------|------------------------------------|----------|-----------------------------------|--------|----------------|------------|
| 1             | 1R =             | X. <sub>11</sub>  | 3.5103                             | 1T =     | X. <sub>21</sub> 3                | .5768  | X <sub>1</sub> | 3.5436     |
| 2             | 2T =             | X. <sub>12</sub>  | 3.5380                             | 2R =     | X. <sub>22</sub> 3                | .5883  | X2             | 3.5631     |
| Period mean   |                  | Х. <sub>1</sub> . | 3.5241                             |          | X. <sub>2</sub> . 3               | .5826  | Х              | 3.5533     |
| RT =          | n <sub>1</sub> = | 6                 |                                    |          |                                   |        |                |            |
| TR =          | n <sub>2</sub> = | 6                 | 1/n <sub>1</sub> +1/n <sub>2</sub> | 0.3333   |                                   |        |                |            |
| balanced      | n =              | 12                | 1/n                                | 0.0833   | n <sub>1</sub> +n <sub>2</sub> -2 | 10     |                |            |
| Analysis of   | Varia            | ance              |                                    |          |                                   |        |                |            |
| Source of val | riation          | df                | SS                                 | MS       | F                                 | P-va   | ue             | CV         |
| Inter-subject | S                |                   |                                    |          |                                   |        |                |            |
| Carry         | -over            | 1                 | 0.00230                            | 0.00230  | 0.0144                            | 0.906  | 679            |            |
| Residu        | uals             | 10                | 1.59435                            | 0.15943  | 3 29.4312                         | 4.32   | <b>E-6</b>     | 28.29%     |
| Intra-subject | S                |                   |                                    |          |                                   |        |                |            |
| Direct        | drug             | 1                 | 0.00040                            | 0.00040  | 0.0733                            | 0.792  | 210            |            |
| Perioc        | ź                | 1                 | 0.02050                            | 0.02050  | 3.7844                            | 0.080  | 036            |            |
| Residu        | uals             | 10                | 0.05417                            | 0.00542  | 2                                 |        |                | 7.37%      |
| Total         |                  | 23                | 1.67172                            |          |                                   |        |                |            |
| S., 1 0082 M  | /I F (m          | navin             | num likelih                        | ood esti | mator) of                         | Dolta- | N <i>A</i> I   |            |

 $X_R$  3.5493 LS (least squares mean for the reference formulation)  $exp(X_R)$  34.79

 $X_T$  3.5574 LS (least squares mean for the test formulation)  $exp(X_T)$  35.07

Biostatistics: Basic concepts & applicable principles for various designs π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 - 30 January 2011

χ ε



#### **Cross-over design:** Example

#### **Classical (Shortest) Confidence Interval**

| ± x rule:      | 20                     | [ 10        | 0 - x; 1 / (1  | 100 -        | - x) ]                                                       |
|----------------|------------------------|-------------|----------------|--------------|--------------------------------------------------------------|
| $\theta_{L}$   | -0.2231                |             |                | $\theta_{U}$ | +0.2231 α 0.0500 p=1-2·α 0.9000                              |
| $\delta_{L}$   | 80%                    |             |                | δυ           | 125% t <sub>2·α,df</sub> 1.8125                              |
| L <sub>1</sub> | -0.0463                |             |                | $U_1$        | 0.0626 difference within Theta-L AND Theta-U; bioequivalent  |
| L <sub>2</sub> | 95.47%                 |             |                | $U_2$        | 106.46% difference within Delta-L AND Delta-U; bioequivalent |
|                | $\delta_{ML}$          | <b>\$</b> _ | <b>100.82%</b> | Ð            | MLE; maximum likelihood estimator                            |
|                | $\delta_{\text{MVUE}}$ |             | 100.77%        |              | MVUE; minimum variance unbiased estimator                    |
|                | $\delta_{RM}$          |             | 100.98%        |              | RM; ratio of formulation means                               |
|                | $\delta_{MR}$          |             | 101.44%        |              | MIR; mean of individual subject ratios                       |

ε Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### **Cross-over design:** Example

Calculation of 90% CI (2-way cross-over)

Sample size (n) 12, Point Estimate (PE) 100.82%, Residual Mean Squares Error (MSE) from ANOVA (In-transformed values) 0.005417, t<sub>on-2</sub> 1.8125

Standard Error  $(SE_{A})$  of the mean difference

$$SE_{\Delta} = \sqrt{MSE} \sqrt{\frac{2}{n}} = \sqrt{0.005417} \sqrt{\frac{2}{12}} = 0.030047$$

Confidence Interval

ε χ ε

$$CL_{L} = e^{\ln PE - t_{2\alpha,df} \cdot SE_{\Delta}} = e^{0.0081349 - 1.8125 \times 0.030047} = 95.47\%$$
$$CL_{H} = e^{\ln PE + t_{2\alpha,df} \cdot SE_{\Delta}} = e^{0.0081349 + 1.8125 \times 0.030047} = 106.46\%$$

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### **R code / result**

#Cross-over 12 subjects <- c(28.39,33.36,24.29,28.61,59.49,42.30) т1 т2 <- c(49.42,36.78,34.81,45.54,28.23,25.71) <- c(39.86,32.75,34.97,45.44,27.87,24.26) R1 R2 <- c(35.44,33.40,24.65,31.77,65.29,37.01)  $<-\log(R1) - \log(T2)$ RT  $<-\log(R2) - \log(T1)$ TR <- length(RT) n1 <- mean(RT) mrt <- var(RT) VRT n2 <- length(TR) <- mean(TR) MTR <- var(TR) VTR <- mean(log(c(T1,T2))) - mean(log(c(R1,R2))) mD <- (((n1-1)\*VRT + (n2-1)\*VTR)/(n1+n2-2))/2 MSE alpha <- 0.05 <- mD - gt(1-alpha,n1+n2-2)\*sgrt(MSE)\* 10 sqrt((1/(2\*n1) + 1/(2\*n2)))hi <- mD + qt(1-alpha,n1+n2-2)\*sqrt(MSE)\* sqrt((1/(2\*n1) + 1/(2\*n2)))result <- paste( paste(" Back transformed (raw data scale)\n", "Point estimate:". round(100\*exp(mD), digits=2),"%\n"), paste("90 % confidence interval:"), paste(round(100\*exp(lo), digits=2), "% to"), paste(round(100\*exp(hi), digits=2),"%\n", paste("CVintra:",round(100\*sqrt(exp(MSE)-1),

digits=2),"%\n")))

cat(result)

ε χ ε Back transformed (raw data scale) Point estimate: 100.82 % 90 % confidence interval: 95.47 % to 106.46 % Cvintra: 7.37 %



## **Comparison of designs**

- •Further reduction in variability, because the influence of periods is accounted for.
  - Paired design: 100.82% [94.91% 107.09%]
  - Cross-over design: 100.82% [95.47% 106.46%]
  - Point estimates are the same, only variability caused by period- and/or sequence-effects is removed.

| Setup Results Verific | cati             | ation    |        |        |        |          |          |  |  |
|-----------------------|------------------|----------|--------|--------|--------|----------|----------|--|--|
| 🗄 🖾 🔄 🎦 🛃             | $\left[ \right]$ |          |        |        |        |          |          |  |  |
| Output Data           |                  | Design   | Ratio  | CL90lo | CL90hi | Diff_SE  | CI_width |  |  |
| III Filtered Cells W  | 1                | Parallel | 95.86  | 75.89  | 121.1  | 0.139176 | 45.21    |  |  |
| Elitered Cells W      | 2                | Paired   | 100.82 | 94.91  | 107.1  | 0.033636 | 12.19    |  |  |
| 🕮 Result Worksheet    | 3                | Xover    | 100.82 | 95.47  | 106.46 | 0.030048 | 10.99    |  |  |

Biostatistics: Basic concepts & applicable principles for various designs in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



## **Comparison of designs**

- Most Important in an ANOVA table is the residual mean error (CI, CV<sub>intra</sub> for future studies).
  - Carry-over (aka sequence effects) can not be handled! Must be excluded by design (long enough washout).
  - Period effects are accounted for (significant *p*-values are not important). Example: all values in PII ×100...

| Dependent                                                         | Hypothesis                                              | DF                      | SS                                                         | MS                                                          | F_stat                                                                                    | P_value                                                  |
|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Ln(AUCinf)                                                        | sequence                                                | 1                       | 0.002299563                                                | 0.002299563                                                 | 0.014423232                                                                               | 0.90678513                                               |
| Ln(AUCinf)                                                        | sequence*subject                                        | 10                      | 1.5943472                                                  | 0.15943472                                                  | 29.431239                                                                                 | 4.3211352E-0                                             |
| Ln(AUCinf)                                                        | treatment                                               | 1                       | 0.000397058                                                | 0.000397058                                                 | 0.07329589                                                                                | 0.79210291                                               |
| Ln(AUCinf)                                                        | period                                                  | 1                       | 0.020500963                                                | 0.020500963                                                 | 3.784425                                                                                  | 0.080364101                                              |
| Ln(AUCinf)                                                        | Error                                                   | 10                      | 0.054171935                                                | 0.005417193                                                 |                                                                                           |                                                          |
|                                                                   |                                                         |                         |                                                            |                                                             |                                                                                           |                                                          |
|                                                                   |                                                         |                         |                                                            |                                                             |                                                                                           |                                                          |
| Dependent                                                         | Hypothesis                                              | DF                      | SS                                                         | MS                                                          | F_stat                                                                                    | P_value                                                  |
| Dependent<br>Ln(AUCinf)                                           | Hypothesis<br>sequence                                  | <b>DF</b>               | <b>SS</b><br>0.002299563                                   | MS<br>0.002299563                                           | <b>F_stat</b>                                                                             | P_value                                                  |
| Dependent<br>Ln(AUCinf)<br>Ln(AUCinf)                             | Hypothesis Sequence Sequence*subject                    | DF<br>1<br>10           | <b>SS</b><br>0.002299563<br>1.5943472                      | MS<br>0.002299563<br>0.15943472                             | F_stat<br>0.014423232<br>29.431239                                                        | P_value<br>0.90678513<br>4.3211352E-0                    |
| Dependent<br>Ln(AUCinf)<br>Ln(AUCinf)<br>Ln(AUCinf)               | Hypothesis<br>sequence<br>sequence*subject<br>treatment | DF<br>1<br>10           | <b>SS</b><br>0.002299563<br>1.5943472<br>0.000397058       | MS<br>0.002299563<br>0.15943472<br>0.000397058              | F_stat<br>0.014423232<br>29.431239<br>0.07329589                                          | P_value<br>0.90678513<br>4.3211352E-0<br>0.79210291      |
| Dependent<br>Ln(AUCinf)<br>Ln(AUCinf)<br>Ln(AUCinf)<br>Ln(AUCinf) | Hypothesis sequence sequence*subject treatment period   | DF<br>1<br>10<br>1<br>1 | SS<br>0.002299563<br>1.5943472<br>0.000397058<br>130.49632 | MS<br>0.002299563<br>0.15943472<br>0.000397058<br>130.49632 | F_stat           0.014423232           29.431239           0.07329589           24089.286 | P_value<br>0.90678513<br>4.3211352E-0<br>0.79210291<br>0 |



Biostatistics: Basic concepts & applicable principles for various designs in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



## **Reading ANOVA tables**



ε Biostatistics: Basic concepts & applicable principles for various designs π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



## A note on BE assessment

The *width* of the confidence interval depends on the variability observed in the study.
The *location* of the confidence interval depends on the observed test/reference-ratio.
Decision rules:

Confidence Interval (CI) entirely outside the Acceptance Range (AR): Bioinequivalence proven.

- CI overlaps the AR, but is not entirely within the AR: Bioequivalence not proven.
- CI entirely within the AR: Bioequivalence proven.

ε Biostatistics: Basic concepts & applicable principles for various designs π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

ε χ



#### A note on BE assessment



χ ε



#### Special case: Evaluation of t<sub>max</sub>

- Since t<sub>max</sub> is sampled from discrete values, a nonparametric method must be applied
- Estimation of differences (linear model)
- Wilcoxon Two-Sample Test (available in SAS 9.2 Proc NPAR1way, Phoenix/WinNonlin, EquivTest/PK, R package *coin*)
- Since based on a discrete distribution, generally α<0.05 (e.g., n=12: 0.0465, 24: 0.0444, 32: 0.0469, 36: 0.0485, 48: 0.0486,...)

#### Hauschke D, Steinijans VW and E Diletti

ε

χ ε A distribution-free procedure for the statistical analysis of bioequivalence studies Int J Clin Pharm Ther Toxicol 28/2, 72–78 (1990)

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



|         | Sequence | e 1 (RT)  | Sequence 2 (TR) |         |          |           |      |
|---------|----------|-----------|-----------------|---------|----------|-----------|------|
| Subject | Period I | Period II | P.D.            | Subject | Period I | Period II | P.D. |
| 2       | 3.0      | 1.5       | -1.5            | 1       | 2.0      | 2.0       | ±0.0 |
| 4       | 2.0      | 2.0       | ±0.0            | 3       | 2.0      | 2.0       | ±0.0 |
| 6       | 2.0      | 3.0       | +1.0            | 5       | 2.0      | 3.0       | +1.0 |
| 8       | 2.0      | 3.0       | +1.0            | 7       | 2.0      | 1.5       | -0.5 |
| 10      | 1.5      | 2.0       | +0.5            | 9       | 3.0      | 2.0       | -1.0 |
| 12      | 3.0      | 2.0       | -1.0            | 11      | 2.0      | 1.5       | -0.5 |
| 14      | 3.0      | 3.0       | ±0.0            | 13      | 3.0      | 1.5       | -1.5 |

ε
 Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

| ADDITIVE | (raw data) | MODEL |
|----------|------------|-------|
|----------|------------|-------|

metric: t<sub>max</sub>

| Sequence | Period 1          |    | Period 2                       | 2  |
|----------|-------------------|----|--------------------------------|----|
| 1        | R <sub>L1</sub> = | 65 | R <sub>U1</sub> =              | 46 |
| 2        | $R_{L2} =$        | 36 | R <sub>U2</sub> =              | 55 |
| RT =     | n <sub>1</sub> =  | 7  |                                |    |
| TR =     | n <sub>2</sub> =  | 7  |                                |    |
| balanced | n =               | 14 | n <sub>1</sub> .n <sub>2</sub> | 49 |

**d.**<sub>1</sub> 0.0000

8

χ ε

- d.<sub>2</sub> -0.1786 (mean period difference in sequence 1 / 2)
- $Y_{R}^{-}$  2.000 median of the reference formulation
- $Y_{T}$  2.000 median of the test formulation

#### **Distribution-Free Confidence Interval (Moses)**

|              | <b>θ</b> ~ | +0.250 Hodges-L | .ehmann e | stimate (m | edian of | paired diffe    | erences)         |                  |
|--------------|------------|-----------------|-----------|------------|----------|-----------------|------------------|------------------|
| Lw           | -0.250     | Uw              | +0.750    | difference | outside  | Theta-L Al      | ND/OR Theta-U; n | ot bioequivalent |
| $\delta_{L}$ | 80%        | δυ              | 120%      |            |          |                 |                  |                  |
| $\theta_{L}$ | -0.429     | θ <sub>U</sub>  | +0.429    | α          | 0.0487   | <i>p</i> =1-2•α | 0.9026           |                  |
| ± x rule :   |            |                 |           |            |          |                 |                  |                  |

#### Wilcoxon-Mann-Whitney Two One-Sided Tests Procedure (Hauschke)

 $W_L$  37
  $W_U$  18

  $W_{0.95,n1,n2}$  38
  $W_{0.05,n1,n2}$  12 H0(1): diff. <= Theta-L AND H0(2): diff. => Theta-U; not bioequivalent

  $p_1$  >0.0487
 and
  $p_2$  >0.0487

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

·BAC



- Higher Order Designs (for more than two treatments)
  - Latin Squares
  - Each subject is randomly assigned to sequences, where number of treatments = number of sequences = number of periods.
  - Variance Balanced Designs

χ ε



#### 3x3x3 Latin Square Design

Period





#### 3×3×3 Latin Square design

#### Advantages

- Allows to choose between two candidate test formulations or comparison of one test formulation with two references.
- Easy to adapt.
- Number of subjects in the study is a multiplicative of three.
- Design for establishment of Dose Proportionality.

#### Disadvantages

ε

χ ε  Statistical analysis more complicated (especially in the case of drop-outs and a small sample size) – not available in some pieces of software.

Extracted pairwise comparisons are imbalanced.

- May need measures against multiplicity (increasing the sample size).
- Not mentioned in any guideline.

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



- Higher Order Designs (for more than two treatments)
  - Variance Balanced Designs (Williams' Designs)
    - For e.g., three formulations there are three possible pairwise differences among formulation means (*i.e.*, form. 1 vs. form. 2., form 2 vs. form. 3, and form. 1 vs. form. 3).
    - It is desirable to estimate these pairwise effects with the same degree of precision (there is a common variance for each pair).
      - > Each formulation occurs only once with each subject.
      - > Each formulation occurs the same number of times in each period.
      - The number of subjects who receive formulation *i* in some period followed by formulation *j* in the next period is the same for all *i* # *j*.
    - Such a design for three formulations is the three-treatment sixsequence three-period Williams' Design.

Biostatistics: Basic concepts & applicable principles for various designs
 <sup>T</sup> Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

8

χ ε



#### •Williams' Design for three treatments

|   |                | Period         |                |
|---|----------------|----------------|----------------|
|   | Ι              | ΙΙ             |                |
| 1 | R              | $T_2$          | T <sub>1</sub> |
| 2 | T <sub>1</sub> | R              | T <sub>2</sub> |
| 3 | $T_2$          | T <sub>1</sub> | R              |
| 4 | T <sub>1</sub> | $T_2$          | R              |
| 5 | $T_2$          | R              | T <sub>1</sub> |
| 6 | R              | T <sub>1</sub> | $T_2$          |

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### •Williams' Design for four treatments

| Soguonco | Period         |                |                |                |  |  |
|----------|----------------|----------------|----------------|----------------|--|--|
|          | Ι              | II             | III            | IV             |  |  |
| 1        | R              | T <sub>3</sub> | T <sub>1</sub> | $T_2$          |  |  |
| 2        | T <sub>1</sub> | R              | $T_2$          | T <sub>3</sub> |  |  |
| 3        | $T_2$          | T <sub>1</sub> | $T_3$          | R              |  |  |
| 4        | $T_3$          | $T_2$          | R              | T <sub>1</sub> |  |  |

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### Williams' Designs

#### Advantages

- Allows to choose between two candidate test formulations or comparison of one test formulation with two references.
- Design for establishment of Dose Proportionality.
- Paired comparisons (e.g., for a nonparametric method) can be extracted, which are also balanced.

Mentioned in Brazil's (ANVISA) and EU's (EMA) guidelines.

#### Disadvantages

8

χ ε

- Mores sequences for an odd number of treatment needed than in a Latin Squares design (but equal for even number).
- Statistical analysis more complicated (especially in the case of drop-outs) – not available in some softwares.
- May need measures against multiplicity (increasing the sample size).

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### •Higher Order Designs (cont'd)

Bonferroni-correction needed (sample size!)

- If more than one formulation will be marketed (for three simultaneous comparisons without correction patients' risk increases from 5 % to 14 %).
- Sometimes requested by regulators in dose proportionality.

| k | ρ <sub>α=0.05</sub> | ρ <sub>α=0.10</sub> | $lpha_{adj}$ | P <sub>corr</sub> | $lpha_{\!\!\!adj}$ | P <sub>corr</sub> |
|---|---------------------|---------------------|--------------|-------------------|--------------------|-------------------|
| 1 | 5.00%               | 10.00%              | 0.0500       | 5.00%             | 0.100              | 10.00%            |
| 2 | 9.75%               | 19.00%              | 0.0250       | 4.94%             | 0.050              | 9.75%             |
| 3 | 14.26%              | 27.10%              | 0.0167       | 4.92%             | 0.033              | 6.67%             |
| 4 | 18.55%              | 34.39%              | 0.0125       | 4.91%             | 0.025              | 9.63%             |
| 5 | 22.62%              | 40.95%              | 0.0100       | 4.90%             | 0.020              | 9.61%             |
| 6 | 26.49%              | 46.86%              | 0.0083       | 4.90%             | 0.017              | 9.59%             |

 $\alpha_{adj} = \alpha^{\prime k}$   $p_{corr} = 1 - (1 - \alpha_{adj})^{k}$ 

Biostatistics: Basic concepts & applicable principles for various designs
 π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### •Higher Order Designs (cont'd)

Effect of *a*-adjustment on sample size (expected T/R 95%, CV<sub>intra</sub> 20%, power 80%)

| C)/9/ | 2×2       | 6×3                              | comp. | 4×4                                        | comp. |
|-------|-----------|----------------------------------|-------|--------------------------------------------|-------|
| C V % | lpha 0.05 | $lpha_{\!\!a\!d\!j_{\!.}}$ 0.025 | 2×2   | $lpha_{\!\scriptscriptstyle{adj.}}$ 0.0167 | 2×2   |
| 10.0  | 8         | 12                               | +50%  | 16                                         | +100% |
| 12.5  | 10        | 12                               | +20%  | 16                                         | +60%  |
| 15.0  | 12        | 18                               | +50%  | 16                                         | +33%  |
| 17.5  | 16        | 24                               | +50%  | 24                                         | +50%  |
| 20.0  | 20        | 24                               | +20%  | 28                                         | +40%  |
| 22.5  | 24        | 30                               | +25%  | 36                                         | +50%  |
| 25.0  | 28        | 36                               | +29%  | 40                                         | +49%  |
| 27.5  | 34        | 42                               | +24%  | 48                                         | +41%  |
| 30.0  | 40        | 54                               | +35%  | 56                                         | +40%  |

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011



#### Part II: Basic Designs for BE Studies



Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

Biostatistics: Basic concepts & applicable principles for various designs
 Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011

π ε χ ε



## To bear in Remembrance...

To call the statistician after the experiment is done may be no more than asking him to perform a *postmortem* examination: he may be able to say what the experiment died of. *Ronald A. Fisher* 





[The] impatience with ambiguity can be criticized in the phrase: absence of evidence is not evidence of absence. Carl Sagan

[...] our greatest mistake would be to forget that data is used for serious decisions in the very real world, and bad information causes suffering and death. Ben Goldacre



ε Biostatistics: Basic concepts & applicable principles for various designs π Pharma Edge in bioequivalence studies and data analysis | Mumbai, 29 – 30 January 2011