

Low variability

Modified from Fig. 1 Tothfálusi *et al.* (2009)

Conventional concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low.

NTIDs might be problematic

steep/flat PK/PD-curves

NTIDs from ANDAs reviewed by FDA/OGD within 1996 – 2008 (89 studies)

Drug	Studies	AUC _{0-t}		C_{max}	
		Mean	Range	Mean	Range
Warfarin	29	5.7	3.3 – 11.0	12.7	7.7 – 20.1
Levothyroxine	9	9.3	3.8 – 15.5	9.6	5.2 – 18.6
Carbamazepine	15	8.0	4.4 – 19.4	8.7	5.2 – 17.6
Lithium carbonate	16	7.8	4.5 – 14.0	13.5	6.4 – 24.4
Digoxin	5	21.7	13.1 – 32.2	21.0	14.3 – 26.1
Phenytoin	12	9.2	4.1 – 18.6	14.9	7.4 – 20.0
Theophylline	3	17.9	12.8 – 24.2	18.2	11.8 – 25.8

LX Yu

Approaches to Demonstrate Bioequivalence Critical Dose Drugs
Advisory Committee for Pharmaceutical Science and Clinical Pharmacology, April 13, 2010
<a href="http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommittees/Committee

forPharmaceuticalScienceandClinicalPharmacology/UCM209319.pdf

- For NTIDs 20% fluctuation in plasma concentrations might be clinically relevant
- •NTIDs often have low variability; CIs of two generics might be 85–90% and 115–120%. Switchability? Potential Approaches:
 - **■** AUC: PE ⊂ 90–111%
 - **■** AUC: PE ⊂ 95–105%
 - **■**AUC: CI ⊂ 90–111% (like EMA)
 - ■AUC: CI ⊂ 90–111% and includes 100% (like Denmark)
 - **■** AUC: CI ⊂ 95–105%
 - Reference Scaled Average Bioequivalence (RSABE)

 Percentage of ANDAs passing tighter criteria (89 studies)

Method	AUC _{0-t}	C _{max}
CI includes 100%	84.3	69.7
CI ⊂ 90–111%	86.5	60.7
CI \subset 90–111% and includes 100%	77.5	50.6
PE ⊂ 90–111%	100.0	95.5
RSABE	not assessed	

- Tighter AR ensures smaller differences in mean BA
- Differences in variability between products are not addressed
- RSABE suggested

<u>LX Yu 2010</u>

Statistical model

- Fully replicated TRTR | RTRT design
 - ABE model

$$-\theta_A \le \mu_T - \mu_R \le +\theta_A$$

SABE model

$$-\theta_{S} \leq \frac{\mu_{T} - \mu_{R}}{\sigma_{W}} \leq +\theta_{S}$$

■ Regulatory regulatory switching condition θ based on regulatory constant σ_0 0.1 and Δ 1.11111 (=1/0.9, the upper BE limit)

$$\theta = \left(\frac{\ln \Delta}{\sigma_0}\right)^2$$

Evaluation

SABE

- Mixed effects model (SAS Proc MIXED, Phoenix Linear Mixed Effects).
- Determine 95% upper confidence limit for

$$\left(\overline{Y}_{T}-\overline{Y}_{R}\right)^{2}-\theta\cdot s_{WR}^{2}$$

by Howe's method (like in SABE for HVDPs).

- Bioequivalent if 95% upper CL ≤0.
- ABE
 - Mixed effects model.
 - Bioequivalent if 90% CI = 80.00–125.00%.

Evaluation

- ■Comparison of σ_{WT} with σ_{WR}
 - Mixed effects model of intra-subject contrast T_1 – T_2 and R_1 – R_2 by sequence. Comparison based on s_{WT} and s_{WR} (the estimates of σ_{WT} and σ_{WR}). s_{WR} is already available from SABE $(R_1$ – R_2); similar setup for T_1 – T_2 to obtain s_{WT} .
 - Determine 90% confidence interval of σ_{WT}/σ_{WR} as

$$rac{S_{WT}/S_{WR}}{\sqrt{F_{lpha_{2}(
u_{1},
u_{2})}}}, rac{S_{WT}/S_{WR}}{\sqrt{F_{1-lpha_{2}(
u_{1},
u_{2})}}}$$

Evaluation

- ■Comparison of σ_{WT} with σ_{WR}
 - s_{WT} is the estimate σ_{WT} with v_1 degrees of freedom $(v_1 = n_1 2$ in the fully replicate).
 - S_{WR} is the estimate σ_{WR} with ν_2 df.
 - Probability of risk type I $\alpha = 0.1$.
 - $F_{\alpha/2(\nu_1,\nu_2)}$ is the value of the *F*-distribution with ν_1 (numerator) and ν_2 (denominator) degrees of freedom and a probability of $\alpha/2$.
 - $F_{1-\alpha/2(\nu_1,\nu_2)}$ is the value of the F-distribution with ν_1 and ν_2 df and a probability of $1-\alpha/2$.
 - ■Bioequivalent if 95% upper CL of $\sigma_{WT}/\sigma_{WR} \leq 2.5$.

Consequences of Scaling

•At σ_{WR} 0.1 (*CV* 10.03%) the expanded AR is 90.00–111.11%

CV_{WR}	L-U
5	94.87 – 105.41
10	90.02 – 111.08
15	85.35 – 117.02
20	81.17 – 123.20
25	77.15 – 129.62
30	73.40 – 136.25

- •As a consequence of scaling the AR for $s_{WR} > 0.21179$ ($CV_{WR} > 21.42\%$) will be wider than the conventional 80.00–125.00%.
- Possible 'ways out'
 - 1. Cutoff on s_{WR} and switch to conventional unscaled ABE
 - 2. A "Must Pass Both" criterion: RSABE + ABE
 - Both methods maintain the patient's risk <5%.
 Method 2 slightly more conservative.
 Power essentially identical.

DJ Schuirmann

Evaluation of Scaling Approaches to Demonstrate BE of NTI Drugs – OGD Simulation Efforts
Advisory Committee for Pharmaceutical Science and linical Pharmacology, July 26, 2011
<a href="http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommittees

■ Both methods preserve the patient's risk

DJ Schuirmann 2011

Example

- CNS drug from BEBAC's files
 - RTRT | TRTR full replicate, 18 subjects, balanced, complete
 - FDA
 - 1. critbound: $-0.0098283 \le 0 (CV_{WR} 12.49\%, CV_{WT} 5.58\%)$

 - ✓ 2. ABE: 90% CI 93.90–103.35% ⊂ AR
 - 3. upper 95% CL of $s_{WT}/s_{WR} = 0.68427 \le 2.5$
 - EMA
 - > AR 90.00–111.11%
 - ✓ > ABE: 90% CI 93.90–103.35% ⊂ AR $(CV_{WR} 15.86\%, CV_{WT} 5.73\%)$
 - Data set in Excel 2000 format: http://bebac.at/downloads/NTID.xls

Example

Thank You! Reference-Scaled Average Bioequivalence (Part II) Open Questions?

Helmut Schütz **BEBAC**

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

References

•ICH

- E9: Statistical Principles for Clinical Trials (1998)
- EMA-CPMP/CHMP/EWP
 - Guideline on the Investigation of BE (2010)
 - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2011, 2012)
- •US-FDA
 - Center for Drug Evaluation and Research (CDER)
 - Statistical Approaches Establishing Bioequivalence (2001)
 - Bioequivalence Recommendations for Specific Products (2007–2012):

Draft Guidance on Progesterone (Feb 2011) Draft Guidance on Warfarin (Dec 2012)

LX Yu

Approaches to Demonstrate Bioequivalence Critical Dose Drugs

ACPSCP-Meeting, April 13, 2010

http://www.fda.gov/downloads/AdvisoryCommittees/Com mitteesMeetingMaterials/Drugs/AdvisoryCommitteeforPha rmaceuticalScienceandClinicalPharmacology/UCM20931 9.pdf

DJ Schuirmann

Evaluation of Scaling Approaches to Demonstrate BE of NTI **Drugs – OGD Simulation Efforts**

ACPSCP-Meeting, July 26, 2011

http://www.fda.gov/downloads/AdvisoryCommittees/Committ eesMeetingMaterials/Drugs/AdvisoryCommitteeforPharmace uticalScienceandClinicalPharmacology/UCM266777.pdf

■ Davit BM et al.

Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration

The AAPS Journal 14/4, 915-24 (2012)

DOI: 10.1208/s12248-012-9406-x

Fully replicated 4-way design

```
data test1:
  set test;
  if (seg=1 and per=1) or (seg=2 and per=2);
  lat1t=lauct:
run;
data test2:
  set test:
  if (seq=1 \text{ and } per=3) or (seq=2 \text{ and } per=4);
  lat2t=lauct:
run;
data ref1:
  set ref;
  if (seq=1 \text{ and } per=2) or (seq=2 \text{ and } per=1);
  lat1r=lauct:
run;
data ref2:
  set ref:
  if (seg=1 and per=4) or (seg=2 and per=3);
  lat2r=lauct;
run;
```


Fully replicated 4-way design (cont'd)

```
data scavbe:
 merge test1 test2 ref1 ref2;
  by seq subj;
 ilat=0.5*(lat1t+lat2t-lat1r-lat2r);
 dlat=lat1r-lat2r:
run;
proc mixed data=scavbe;
  class seq:
 model ilat =seq/ddfm=satterth;
  estimate 'average' intercept 1 seq 0.5 0.5/e cl alpha=0.1;
  ods output CovParms=iout1;
  ods output Estimates=iout2;
  ods output NObs=iout3;
  title1 'scaled average BE';
  title2 'intermediate analysis - ilat, mixed':
run;
pointest=exp(estimate);
x=estimate**2-stderr**2;
boundx=(max((abs(lower)),(abs(upper))))**2;
```


Fully replicated 4-way design (cont'd)

```
proc mixed data=scavbe;
  class sea:
  model dlat=seg/ddfm=satterth;
  estimate 'average' intercept 1 seq 0.5 0.5/e cl alpha=0.1;
  ods output CovParms=dout1;
  ods output Estimates=dout2;
  ods output NObs=dout3:
  title1 'scaled average BE';
  title2 'intermediate analysis - dlat, mixed';
run;
s2wr=estimate/2;
dfd=df:
theta=((log(1.11111))/0.1)**2;
v=-theta*s2wr;
boundy=y*dfd/cinv(0.95,dfd);
sWR=sqrt(s2wr);
critbound=(x+y)+sqrt(((boundx-x)**2)+((boundy-y)**2));
```


Unscaled 90% BE confidence intervals

```
PROC MIXED
  data=pk;
 CLASSES SEQ SUBJ PER TRT;
 MODEL LAUCT = SEQ PER TRT/ DDFM=SATTERTH;
  RANDOM TRT/TYPE=FA0(2) SUB=SUBJ G;
  REPEATED/GRP=TRT SUB=SUBJ:
  ESTIMATE 'T vs. R' TRT 1 -1/CL ALPHA=0.1;
 ods output Estimates=unsc1:
  title1 'unscaled BE 90% CI - quidance version': title2 'AUCt';
run:
data unsc1;
  set unsc1:
 unscabe_lower=exp(lower);
 unscabe_upper=exp(upper);
run:
```

RSABE if

- 1. critbound <0 and
- 2. 90% CI of ABS within 0.8000 and 1.2500 and
- 3. 95% upper CL of sWT/sWR ≤2.5.

