

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

•The more 'sophisticated' a design is, the more information (in terms of variances) we may obtain.

Hierarchy of designs:

Full replicate (TRTR | RTRT) 🏷

Partial replicate (TRR | RTR | RRT) →

Standard 2×2 cross-over (RT | TR) →

Parallel (R | T)

π ε χ ε

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence T Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Designs

Parallel Groups (patients, long half-life drugs)
Cross-over (generally healthy subjects)
Standard 2×2×2
Higher Order Designs (more than two formulations)
Incomplete Block Designs
Latin Squares
Variance Balanced Designs (Williams' Designs)
Replicate designs

χ ε

Cross-over designs Standard 2×2×2 Design Period Π RANDOMIZATI Sequence 1 Reference Test WASHOU⁻ **Subjects** Sequence 2 Reference Test

πεχε

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

- Every subject is treated once with both test and reference.
- Subjects are randomized into two groups; one is receiving the formulations in the order RT and the other one in the order TR. These two orders are called sequences.
- •Whilst in a paired design we must rely on the assumption that no external influences affect the periods, a cross-over design will account for that.

Cross-over design: Model

Multiplicative Model (X-over without carryover)

$$X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$$

X_{ijk}: *In*-transformed response of *j*-th subject $(j=1,...,n_i)$ in *i*-th sequence (i=1,2) and *k*-th period (k=1,2), μ : global mean, μ_l : expected formulation means $(l=1,2: \mu_1=\mu_{test}, \mu_2=\mu_{ref.})$, π_k : fixed period effects, Φ_l : fixed formulation effects $(l=1,2: \Phi_1=\Phi_{test}, \Phi_2=\Phi_{ref.})$

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence ^{Edge} in Drug Product Development | Mumbai, 28 January 2012

ε χ ε

Cross-over design: Assumptions

Multiplicative Model (X-over without carryover)

$$X_{ijk} = \mu \cdot \pi_k \cdot \Phi_l \cdot s_{ik} \cdot e_{ijk}$$

• All $ln\{s_{ik}\}$ and $ln\{e_{ijk}\}$ are independently and normally distributed about unity with variances σ_s^2 and σ_e^2 .

- This assumption may not hold true for all formulations; if the reference formulation shows higher variability than the test formulation, a 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
 - This assumption should not be a problem, unless you plan to include twins or triplets in your study...

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Standard 2×2×2 design

- Advantages
 - Globally applied standard protocol for bioequivalence, PK interaction- and food-effect studies
 - Straigthforward statistical analysis
- Disadvantages

ε χ ε

- Not suitable for drugs with long half life (\rightarrow parallel groups)
- Not optimal for studies in patients with instable diseases (
 → parallel groups)
- Not optimal if CV uncertain (→ two-stage sequential designs)
- Not optimal for HVDs/HVDPs (→ replicate designs)

π Pharma Edge In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence in Drug Product Development | Mumbai, 28 January 2012

ε χ

Cross-over design: Evaluation

- Mainly by ANOVA and LMEM (linear mixed effects modeling). Results are identical for balanced datasets, and differ only slightly for imbalanced ones.
- Avoid M[§]-Excel! Almost impossible to validate; tricky for imbalanced datasets – a nightmare for higher-order Xovers. Replicates impossible.
 Suitable software: SAS, Phoenix/WinNonlin, Kinetica and EquivTest/PK (both only 2×2 Xover), S+, Package *bear* for R (freeware).

			In the local division of the local divisiono		
	seque	nce RT		sequer	nce TR
ct	ΡI	ΡII	subject	ΡΙ	ΡII
2	39.86	49.42	1	28.39	35.44
3	32.75	36.78	4	33.36	33.40
5	34.97	34.81	6	24.29	24.65
8	45.44	45.54	7	28.61	31.77
0	27.87	28.23	9	59.49	65.29
1	24.26	25.71	12	42.30	37.01
	2 3 5 8 0	2 39.86 3 32.75 5 34.97 8 45.44 0 27.87	332.7536.78534.9734.81845.4445.54027.8728.23	239.8649.421332.7536.784534.9734.816845.4445.547027.8728.239	239.8649.42128.39332.7536.78433.36534.9734.81624.29845.4445.54728.61027.8728.23959.49

Ordered by treatment sequences (RT|TR)

ANOVA on log-transformed data \rightarrow

subject		Т	R
1	2	28.39	35.44
2	3	39.86	49.42
3		32.75	36.78
4		33.36	33.40
5	3	34.97	34.81
6	2	24.29	24.65
7	2	28.61	31.77
8	2	45.44	45.54
9	Ę	59.49	65.29
10	2	27.87	28.23
11	2	24.26	25.71
12	2	42.30	37.01

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Sequence		Peric	od 1		Period 2		Se	quence mean	
1	1R =	X. ₁₁	3.5103	1T =	X. ₂₁	3.5768		3.5436	
2	2T =	X. ₁₂	3.5380	2R =	X. ₂₂	3.5883	X2	3.5631	
Period mean		X. ₁ .	3.5241		X. ₂ .	3.5826	Х	3.5533	
RT =	n ₁ =	6							
TR =	n ₂ =	6	1/n ₁ +1/n ₂	0.3333					
balanced	n =	12	1/n	0.0833	n ₁ +n ₂ -2	10	2		
Analysis of	Analysis of Variance								
Source of var	iation	df	SS	MS	F	P-val	ue	CV	
Inter-subject	S								
Carry-	over	1	0.00230	0.00230	0.014	4 0.906	679		
Resid	uals	10	1.59435	0.15943	3 29.431	2 4.32	E-6	28.29%	
Intra-subject	S								
Direct	drug	1	0.00040	0.00040	0.073	3 0.792	210		
Perioc	ź	1	0.02050	0.02050	3.784	4 0.080	036		
Resid	uals	10	0.05417	0.00542	2			7.37%	
Total		23	1.67172					29.31%	

 δ_{ML} **1.0082** *MLE* (maximum likelihood estimator) of Delta-ML

 X_R 3.5493 LS (least squares mean for the reference formulation) exp(X_R) 34.79

 X_T 3.5574 LS (least squares mean for the test formulation) $exp(X_T)$ 35.07

ε In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Classical (Shortest) Confidence Interval

± x rule:	20	[10	0 - x; 1 / (1	00 -	x)]				
θ_{L}	-0.2231			θ_{U}	+0.2231	α 0).0500 P=	=1-2 - α	0.9000
δ_{L}	80%			δυ	125%	$t_{2\cdot lpha, df}$ 1	.8125		
L ₁	-0.0463			U ₁	0.0626	difference	within Th	heta-L	AND Theta-U; bioequivalent
L ₂	95.47%			U ₂	106.46%	difference	within D)elta-L	AND Delta-U; bioequivalent
	δ_{ML}	Æ	100.82%	Ŷ	MLE; max	kimum likel	lihood es	timato	r
	δ_{MVUE}		100.77%		MVUE; minimum variance unbiased estimator				d estimator
	δ_{RM}		100.98%		RM; ratio	of formulat	tion mear	ns	
	δ_{MIR}		101.44%		MIR; mea	n of indivia	lual subje	ect rati	ios

π ε χ ε

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Calculation of 90% CI (2-way cross-over)

Sample size (n) 12, Point Estimate (PE) 100.82%, Residual Mean Squares Error (MSE) from ANOVA (In-transformed values) 0.005417, t_{cn-2} 1.8125

Standard Error (SE_A) of the mean difference

$$SE_{\Delta} = \sqrt{MSE} \sqrt{\frac{2}{n}} = \sqrt{0.005417} \sqrt{\frac{2}{12}} = 0.030047$$

Confidence Interval

ε χ ε

$$CL_{L} = e^{\ln PE - t_{2\alpha,df} \cdot SE_{\Delta}} = e^{0.0081349 - 1.8125 \times 0.030047} = 95.47\%$$
$$CL_{H} = e^{\ln PE + t_{2\alpha,df} \cdot SE_{\Delta}} = e^{0.0081349 + 1.8125 \times 0.030047} = 106.46\%$$

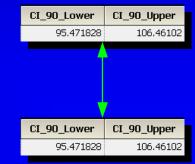
R code / result

#Cross-over 12 subjects

<- c(28.39,33.36,24.29,28.61,59.49,42.30) т1 т2 <- c(49.42,36.78,34.81,45.54,28.23,25.71) <- c(39.86,32.75,34.97,45.44,27.87,24.26) R1 R2 <- c(35.44,33.40,24.65,31.77,65.29,37.01) $<-\log(R1) - \log(T2)$ RT $<-\log(R2) - \log(T1)$ TR <- length(RT) n1 mrt <- mean(RT) <- var(RT) VRT n2 <- length(TR) <- mean(TR) MTR <- var(TR) VTR <- mean(log(c(T1,T2))) - mean(log(c(R1,R2)))mD <- (((n1-1)*VRT + (n2-1)*VTR)/(n1+n2-2))/2 MSE alpha <- 0.05 <- mD - gt(1-alpha,n1+n2-2)*sgrt(MSE)* 10 sqrt((1/(2*n1) + 1/(2*n2)))hi <- mD + qt(1-alpha,n1+n2-2)*sqrt(MSE)* sqrt((1/(2*n1) + 1/(2*n2)))result <- paste(paste(" Back transformed (raw data scale)\n", "Point estimate:". round(100*exp(mD), digits=2),"%\n"), paste("90 % confidence interval:"), paste(round(100*exp(lo), digits=2), "% to"), paste(round(100*exp(hi), digits=2),"%\n", paste("CVintra:",round(100*sqrt(exp(MSE)-1), digits=2),"%\n"))) cat(result)

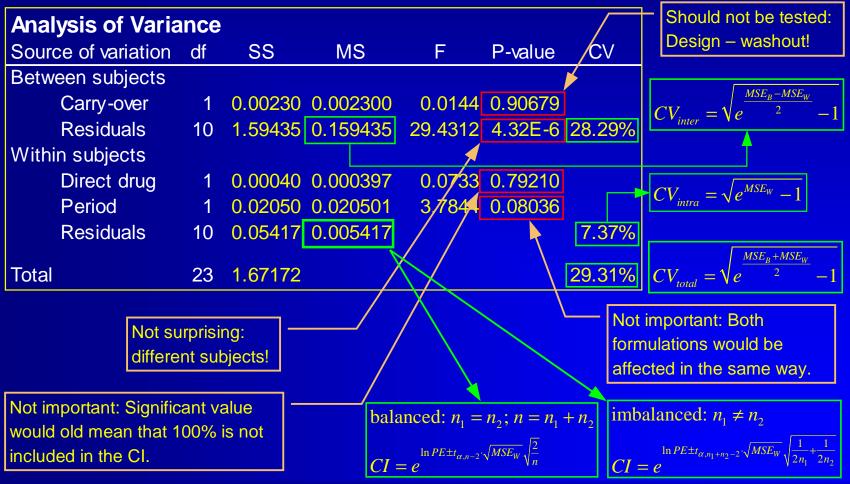
Back transformed (raw data scale) Point estimate: 100.82 % 90 % confidence interval: 95.47 % to 106.46 % CVintra: 7.37 %

8 χ ε


In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence in Drug Product Development | Mumbai, 28 January 2012

Comparison of designs

- •Most important in an ANOVA table is the residual mean error (\rightarrow CI, CV_{intra} for future studies).
 - Carry-over (aka sequence effects) can not be handled! Must be excluded by design (long enough washout).
 - Period effects are accounted for (significant *p*-values are not important). Example: all values in P2 ×100...


Dependent	Hypothesis	DF	SS	MS	F_stat	P_value
Ln(AUCinf)	sequence	1	0.002299563	0.002299563	0.014423232	0.90678513
Ln(AUCinf)	sequence*subject	10	1.5943472	0.15943472	29.431239	4.3211352E-0
Ln(AUCinf)	treatment	1	0.000397058	0.000397058	0.07329589	0.79210291
Ln(AUCinf)	period	1	0.020500963	0.020500963	3.784425	0.080364101
Ln(AUCinf)	Error	10	0.054171935	0.005417193		
Dependent	Hypothesis	DF	SS	MS	F_stat	P_value
Dependent Ln(AUCinf)	Hypothesis sequence	DF	SS 0.002299563	MS 0.002299563	F_stat	P_value 0.90678513
-		1			-	-
Ln(AUCinf)	sequence	1	0.002299563	0.002299563	0.014423232	0.90678513
Ln(AUCinf) Ln(AUCinf)	sequence sequence*subject	1 10	0.002299563	0.002299563	 0.014423232 29.431239	- 0.90678513 4.3211352E-0

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Reading ANOVA tables

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

8

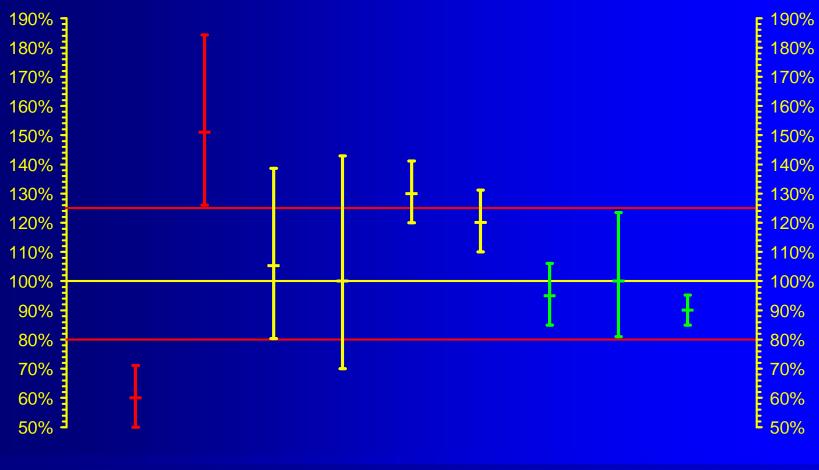
χ ε

ε χ

A note on BE assessment

The *width* of the confidence interval depends on the variability observed in the study.
The *location* of the confidence interval depends on the observed test/reference-ratio.
Decision rules:

Confidence Interval (CI) entirely outside the Acceptance Range (AR): Bioinequivalence proven.


- CI overlaps the AR, but is not entirely within the AR: Bioequivalence not proven.
- CI entirely within the AR: Bioequivalence proven.

ε In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

χ ε

A note on BE assessment

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 T Pharma Edge
 In Drug Product Development | Mumbai, 28 January 2012

ε χ

EMA vs. Rest of the World

 EMA BE GL (2010), 4.1.8 Evaluation / Statistical analysis:

> The terms to be used in the ANOVA model are usually sequence, subject within sequence, period and formulation. Fixed effects, rather than random effects, should be used for all terms.

Adapt your standard setup:

- SAS: Proc GLM instead of Proc MIXED (*i.e.* incomplete data are dropped).
- Phoenix/WinNonlin: Don't use the defaults!

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

π ε χ ε

Model Fixed Effects Variance Structure Options Model Specification + * () sequence+treatment+period	Model Fixed Effects Classification Variables subject treatment sequence period	Variance Structure Options General Options Add Random Delete Random + * () Repeated Random 1
Classification Regressors/Covariates subject treatment sequence period	Regressors/Covariates	Variance Blocking Variables (Subject) Group Group Variance Components
Model Fixed Effects Model Specification + * () sequence+treatment+peri Classification Subject treatment sequence period		Options ss

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

BE

·BAC

ε χ

Balanced, incomplete, imbalanced data...

- •Balanced: Identical numbers of subjects in both sequences $(n_{RT} = n_{TR})$
- •Incomplete: $n_{RT} = n_{TR}$, one period is missing •Imbalanced: $n_{RT} \neq n_{TR}$
- A mixed (random effects) model might recover some information from missing periods, but the differences are small and rarely used in 2×2 Xovers (although default in Phoenix / WinNonlin).
 Proc GLM drops incomplete data.

ε χ ε

Random vs. fixed

Dataset from Chow & Liu

Design and Analysis of Bioavailability and Bioequivalence Studies, Chapman & Hall/CRC Press, Boca Raton, 3rd ed. 2008, p71

- Complete data; n=24
- Incomplete data; n=24, subject 24's period 2 (T) removed
- Imbalanced data; n=23, subject 24 removed

Random vs. fixed

Dataset from Chow & Liu

Design and Analysis of Bioavailability and Bioequivalence Studies, Chapman & Hall/CRC Press, Boca Raton, 3rd ed. 2008, p71

dataset	model	df	PE	90% CI		CV _{intra}
balanced	random	22.	97.18%	88.31%	106.93%	19.47%
Dalanceu	fixed	22.	97.18%	88.31%	106.93%	19.47%
incomplete	random	20.82	96.47%	87.61%	106.22%	19.22%
incomplete	fixed	21.	95.61%	86.86%	105.23%	19.06%
imbalanced	random	21.	95.61%	86.86%	105.23%	19.06%
Innbalanceu	fixed	21.	95.61%	86.86%	105.23%	19.06%

E In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Special case: Evaluation of t_{max}

- Since t_{max} is sampled from discrete values, a nonparametric method must be applied
- Estimation of differences (linear model)
- Wilcoxon Two-Sample Test (available in SAS 9.2+ Proc NPAR1way, Proc StatXact, Phoenix / WinNonlin, EquivTest/PK, R package *coin*)
- Since based on a discrete distribution, generally α<0.05 (e.g., n=12: 0.0465, 24: 0.0444, 32: 0.0469, 36: 0.0485, 48: 0.0486,...)

Hauschke D, Steinijans VW and E Diletti

ε

χ ε A distribution-free procedure for the statistical analysis of bioequivalence studies Int J Clin Pharm Ther Toxicol 28/2, 72–78 (1990)

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge
 in Drug Product Development | Mumbai, 28 January 2012

	Sequence	e 1 (RT)	Sequence 2 (TR)				
Subject	Period I	Period II	P.D.	Subject	Period I	Period II	P.D.
2	3.0	1.5	-1.5	1	2.0	2.0	±0.0
4	2.0	2.0	±0.0	3	2.0	2.0	±0.0
6	2.0	3.0	+1.0	5	2.0	3.0	+1.0
8	2.0	3.0	+1.0	7	2.0	1.5	-0.5
10	1.5	2.0	+0.5	9	3.0	2.0	-1.0
12	3.0	2.0	-1.0	11	2.0	1.5	-0.5
14	3.0	3.0	±0.0	13	3.0	1.5	-1.5

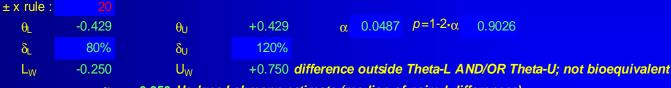
ε In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

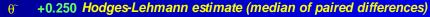
ADDITIVE (raw data) MODEL

metric: tmax

Sequence	Period 1		Period 2	
1	$R_{L1} =$	65	R _{U1} =	46
2	$R_{L2} =$	36	$R_{U2} =$	55
RT =	n ₁ =	7		
TR =	n ₂ =	7		
balanced	n =	14	n ₁ •n ₂	49

d.₁ 0.0000


8


χ ε d.2 -0.1786 (mean period difference in sequence 1 / 2)

 $Y_{R} = 2.000$ median of the reference formulation

 Y_{T}^{2} 2.000 median of the test formulation

Distribution-Free Confidence Interval (Moses)

Wilcoxon-Mann-Whitney Two One-Sided Tests Procedure (Hauschke)

 W_L 37
 W_U 18

 $W_{0.95,n1,n2}$ 38
 $W_{0.05,n1,n2}$ 12 H0(1): diff. <= Theta-L AND H0(2): diff. => Theta-U; not bioequivalent

 p_1 >0.0487
 and
 p_2 >0.0487

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge
 In Drug Product Development | Mumbai, 28 January 2012

3

χ ε

Thank You! Statistical aspects of two-way cross-over studies Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
 π Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

To bear in Remembrance...

To call the statistician after the experiment is done may be no more than asking him to perform a *postmortem* examination: he may be able to say what the experiment died of. *Ronald A. Fisher*

[The] impatience with ambiguity can be criticized in the phrase: absence of evidence is not evidence of absence. Carl Sagan

[...] our greatest mistake would be to forget that data is used for serious decisions in the very real world, and bad information causes suffering and death. Ben Goldacre

ε In vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence Pharma Edge in Drug Product Development | Mumbai, 28 January 2012

Subject	Period	Sequence	Formulation	AUC
1	1	RT	Reference	74.675
1	2	RT	Test	73.675
2	1	TR	Test	74.825
2	2	TR	Reference	37.35
3	1	TR	Test	86.875
3	2	TR	Reference	51.925
4	1	RT	Reference	96.4
4	2	RT	Test	93.25
5	1	RT	Reference	101.95
5	2	RT	Test	102.125
6	1	RT	Reference	79.05
6	2	RT	Test	69.45
7	1	TR	Test	81.675
7	2	TR	Reference	72.175
8	1	TR	Test	92.7
8	2	TR	Reference	77.5
9	1	TR	Test	50.45
9	2	TR	Reference	71.875
10	1	TR	Test	66.125
10	2	TR	Reference	94.025
11	1	RT	Reference	79.05
11	2	RT	Test	69.025
12	1	RT	Reference	85.95
12	2	RT	Test	68.7

Subject	Period	Sequence	Formulation	AUC
13	1	TR	Test	122.45
13	2	TR	Reference	124.975
14	1	TR	Test	99.075
14	2	TR	Reference	85.225
15	1	RT	Reference	69.725
15	2	RT	Test	59.425
16	1	RT	Reference	86.275
16	2	RT	Test	76.125
17	1	TR	Test	86.35
17	2	TR	Reference	95.925
18	1	TR	Test	49.925
18	2	TR	Reference	67.1
19	1	RT	Reference	112.675
19	2	RT	Test	114.875
20	1	RT	Reference	99.525
20	2	RT	Test	116.25
21	1	TR	Test	42.7
21	2	TR	Reference	59.425
22	1	TR	Test	91.725
22	2	TR	Reference	114.05
23	1	RT	Reference	89.425
23	2	RT	Test	64.175
24	1	RT	Reference	55.175
24	2	RT	Test	74.575

ε
m Pharma EdgeIn vitro in vivo Correlation (IVIVC), Biowaivers & Statistical Aspects of Bioequivalence
in Drug Product Development | Mumbai, 28 January 2012