Pharmacokinetic Issues

A Basic Refresher

Pharmacokinetics

φαρμακός (drug) + κινητικός (putting in motion)

- Term introduced in 1953.
 - Friedrich H Dost, Der Blutspiegel: Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit (1953)
- *Pharmacokinetics* may be simply defined as what the body does to the drug, as opposed to *pharmacodynamics* which may be defined as what the drug does to the body.
 - Leslie Z Benet, Pharmacokinetics: Basic Principles and Its Use as a Tool in Drug Metabolism (1984)

(L)ADME

- Liberation
 - Release & dissolution
- Absorption
 - Permeation (diffusion & transport)
- Distribution
 - Peripheral compartment(s)
- Metabolisation
 - Gut wall & first pass
- Excretion
 - Urine, feces, sweat, air,...

universitäts klinikumbonn

Absorption

Elimination

Absorption revisited

Pharmacokinetic models

The body is simplified to one – or more – 'Compartments' where the drug is distributed

- One compartment model
 - Drug is distributed homogeneously within the entire body.
- Two compartment model
 - The first (central) compartment is *loosely* related to the blood and heavily perfused organs: Liver, kidneys, lung, muscles, (brain).
 - The second (peripheral) compartment describes less perfused tissues (fat, bones, ...).

Pharmacokinetic models

Compartment models

- Compartments are
 - described by a volume and
 - pathways which link them.
- These links may be
 - unidirectional (absorption, excretion) or
 - bidirectional (central \leftrightarrow peripheral)
- Most common models are 'mammillary', *i.e.*,
 - absorption to the central compartment,
 - distribution to peripherial and back to the central compartment, and
 - elimination from the central compartment.

Pharmacokinetic models

Excursion into Hydrodynamics

- Driving force for draining an open tank: Hydrostatic pressure (height of liquid column & gravity).
- Emptied volume decreases with time.
- Same proportion is emptied in the same time interval.

The whole body is simplified to one 'compartment'

- Practically instantaneous distribution.
- Homogenous within all tissues.
- Concentrations decline exponentially.

Half life

- Troughout the profile concentration drops to $\frac{1}{2}$ of its previous value within one 'half life' ($t_{\frac{1}{2}}$).
- In a semilogarithmic plot the profile shows a straight line with
 - a slope of $-\ln(2)/t_{1/2}$, which is the elimination rate constant k_e and
 - the intercept is related to the initial concentration by $C_0 = e^{intercept}$.

Volume of distribution

- At administration the entire dose (*D*) is assumed to homogenously dissolve in the 'Volume of distribution' (V_d).
- We can only measure concentrations.

- At
$$t = 0$$
 we get $V_d = \frac{C_0}{D}$.

- Cave: V_d describes a *hypothetical* compartment, whereas in reality the distribution might not be homogenous. Some lipophilic drugs have a V_d of hundreds of liters...
- Classical PK is *not* directly related to physiology.
- Essentially, all models are wrong, but some are useful. George Box

Clearance

- Instead of describing elimination by the rate constant k_e (unit: 1/time) we can also ask for the *fraction* of V_d which is completelly 'cleared' of the drug per unit of time.
- This parameter is called 'Clearance' *CL* (unit: volume/time), which leads to basic equations of pharmacokinetics:

$$CL = V_{d} \cdot k_{e} \text{ or } \frac{D}{AUC}, \text{ where } AUC = \int_{t=0}^{t=\infty} C(t) dt$$

$$[\text{volume / time}] = \frac{[\text{mass}]}{[\text{time} \times \text{mass / volume}]}$$

$$\text{Image: St. JAMES'S} = \int_{t=0}^{t=\infty} C(t) dt$$

Model building process

- Define the model.
- This leads to a set of differential equations.
- The integrated form of the equations is used to fit the observed concentrations to the model.

- We can introduce covariates which may influence concentrations (e.g., body weight, age, sex, HCT, ...).
- We can try to link PK with pharmacodynamics which regimen leads to an optimum effect?

k₁₀

- Define the model
 - Compartments
 - Links between them
- This leads to a set of differential equations:

$$\dot{x_{1}}(t) = -k_{10}x_{1}(t) - k_{12}x_{1}(t) + k_{21}x_{2}(t), \quad x_{1}(0) = D \dot{x_{2}}(t) = +k_{12}x_{1}(t) - k_{21}x_{2}(t), \quad x_{2}(0) = 0$$

- Simple ones can be solved mathematically.
- More complicated ones by means of 'Laplace Transformations'.
- Some can be only numerically integrated (software required).

- The integrated form of the equations comes in two 'flavors'
 - Micro-constants (volumes of distribution, rate constants or clearances)
 - One compartment IV bolus, parameterized in rate constant or clearance

$$\hat{C}(t) = \frac{D}{V} e^{-k_{10} \cdot t}$$
 or $\hat{C}(t) = \frac{D}{V} e^{-\frac{CL}{V}}$

- Macro- or hybrid-constants (sum of exponentials)
 - Two compartments IV bolus

$$\hat{\mathbf{C}}(t) = \mathbf{A} \cdot \mathbf{e}^{-\alpha \cdot t} + \mathbf{B} \cdot \mathbf{e}^{-\beta \cdot t}$$

- Micro vs. macro...
 - The two parameterizations are equivalent, *i.e.*, they have a strict mathematical relationship though the formulas relating them might be nasty (*e.g.*, two-comp. IV micro →macro)

$$\alpha = \frac{1}{2} \Big(k_{10} + k_{12} + k_{21} + \sqrt{(k_{10} + k_{12} + k_{21})^2 - 4k_{10}k_{21}} \Big)$$

$$\beta = \frac{1}{2} \Big(k_{10} + k_{12} + k_{21} - \sqrt{(k_{10} + k_{12} + k_{21})^2 - 4k_{10}k_{21}} \Big)$$

$$A = \frac{D(\alpha - k_{21})}{V_1(\alpha - \beta)}$$

$$B = \frac{D(k_{21} - \beta)}{V_1(\alpha - \beta)}$$

Model building process

- The integrated form of equations is used to fit the observed concentrations to the model
 - Different methods exist.
 - Most simple one: Minimize the sum of least squares

$$\sum_{i=1}^{i=n} \left(\boldsymbol{C}_i - \boldsymbol{\hat{C}}_i \right)^2 \rightarrow \text{ Min!}$$

where C_i are the observed and \hat{C}_i the predicted concentrations.

- Once the model's parameters are obtained, we can make predictions:
 - We can not only describe the time course of concentrations in plasma, but also in 'deeper' compartments and urine.
 - Derive suitable dosage regimens, e.g.,
 - Deal with accumulation,
 - Minimize fluctuations of concentrations in steady state,
 - Keep minimum concentrations above a threshold, ...
- We can assess whether patients' metrics influence concentrations. Examples:
 - Volume of distribution generall increases with body weight: C \downarrow
 - Clearance may decrease with age: C \uparrow

Rate of drug input

 Average concentrations and the AUC are independent from the input-rate.
 Only maximum concentrations – and therefore, fluctuations in steady state – are affected.

Dost's 'Law of Corresponding Areas' aka 'Superposition Principle'

JAMES'S

• In a linear PK system the Area Under the Curve in steady state within one dosing interval $(AUC_{0-\tau})$ equals $AUC_{0-\infty}$ after a single dose.

Relevance of phases

- Generally the slowest phase is responsible for accumulation.
 Commonly 'terminal half life' is used synonymously with 'biological half life'. However, sometimes the slow phase is not relevant.
- In any multi-compartment model (parameterized in macro-constants) the *AUC* is given as

$$AUC_{0-\infty} = \sum_{i=1}^{i=n} \frac{X_i}{\lambda_i}$$

where X_i are the coefficients and λ_i the exponents.

Relevance of phases

- In the example all parameters are identical, except A and B (A + B is kept constant). 100
- $AUC_{0-\infty}$ are identical.
- However, the slow phases account for 71%, 91%, and 98% of $AUC_{0-\infty}$.

Mean of Residence Times

- Distribution and elimination are stochastic processes.
 - Some molecules leave the circulation very quickly, whereas others stay for a long time.
 - Example
 - We dose 2000 IU (activity 4.5 MIU/mg) of FVIII (265 kDa) which will be eliminated with a half life of twelve hours. 1.67 nmol are ≈10¹⁵ (one quadrillion = 1 000 000 000 000 000!) molecules. If we could 'tag' individual molecules, we would see the first ones already leaving the central circulation within ~2 minutes. However, most stay longer...
 - If we register how long each molecule stays in the body (*i.e.*, their 'residence times') we could draw a histogram like for any other distribution.

Mean of Residence Times

- This histogram is actually the concentration-time curve.
- Distributions can be described by their so-called 'statistical moments'.
 - The 'zero' moment is given as

$$S_0 = \int f(x) dx$$

The first as

$$\mathbf{S}_1 = \int \mathbf{x} \cdot \mathbf{f}(\mathbf{x}) \, \mathrm{d} \mathbf{x}$$

- The second as
 - $\mathbf{S}_2 = \int \mathbf{x}^2 \cdot f(\mathbf{x}) \mathrm{d}\mathbf{x}$

Mean of Residence Times

- In pharmacokinetics $S_0 = AUC$ and $S_1 = AUMC$, the 'Area Under the Moment Curve'.
- The 'Mean of Residence Times' is calculated as
 - MRT = AUMC/AUC
 (IV and EV administration)
 - MRT = AUMC / AUC ½t*
 (infusion, where t* = length of infusion)
- Rule of thumb: after MRT ~²/₃ of the drug have been eliminated.
- S₂ is rarely used (leads to VRT, the 'Variance of Residence Times').

S univers

In general we are not interested in describing the PK of one particular patient, but at least the group of patients in a study.

- Stage 1
 - Fit individual patients to a model.
 - Derive a set of PK parameters.
- Stage 2
 - From this set of PK parameters calculate means and standard deviations.
 - Optionally calculate a confidence interval which we can use in predicting what to expect in the *population* of patients.

Problems

- Which mean?
 - Many biologic variables do not follow a normal distribution.
 - Geometric mean: Clearances, volumes.
 - Harmonic mean:
 Rate constants.
 - Arithmetic mean: Excreted amounts.

Problems

- What if patients are best fit to *different* models?
 - Patients may belong to different genotypes (e.g., ex- 10 tensive and poor metabolizers).
 - Due to limitations of the bioanalytical method the 'slow' phase is not observed in EMs.
 - Best fits are a one-comp.
 model for the EM and a twocomp. model for the PM.

Problems

- What if patients are best fit to *different* models?
 - Although eliminations are identical (parallel lines in the last phase) – we don't see it in the EM.
 - The model of the PM has five parameters $(V_1, V_2, k_{10}, k_{12}, k_{21})$, but the EM's model only two (V_1, k_{10}) .
 - It does not make sense to calculate means 'apples and oranges'...

Problems in the Two-Stage Procedure lead in the early 1970s to 'Population PK Modeling'

- Simultaneous fit of all patients' data
 - Separation of residual error into intra- and inter-individual components.
 - Direct assessment of covariates (body weight, age, sex, HCT, ...).
- PK of an 'average patient' is derived
 - Taking variabilities into account we can predict the PK of the entire *population* of patients.
 - Since covariates are already part of the model, we can predict the PK of a *particular patient* based upon them.

Basics

- Nonlinear Mixed Effects Model
 - Mixed Effects Model: Fixed and Random Effects
- Estimates Population PK parameters (V, CL, ...)
 - Fixed Effects (thetas θ)
- Estimates Variability
 - Random Effects (etas η)
 - Intersubject Variability
 - Interoccasion Variability (day to day)
 - It is expected that etas are distributed N(0, ω^2).

Basics

- Estimates Variability (cont'd)
 - Residual Error (epsilons ε)
 - Intrasubject: Measurement error, model misspecification, ...
 - It is expected that epsilons are distributed N(0, σ^{2}).
- Identify factors determining intersubject Variability: Covariates
 - Demographics: Body weight / surface area, age, sex, ...
 - Genotypes: CYP450, ...
 - Physiology: Renal (creatinine clearance) or hepatic impairment, HCT, disease state, ...
 - Influence of concomitantly administered drugs (DDI)
 - Others: Food, circadian variation, formulation, ...

Model

- $y_{ij} = f(\Theta_i) + \varepsilon_{ij}$, where
 - y_{ij} is the *j*th observation of the *i*th subject,
 - f is a model that describes all observations,
 - Θ_i is a vector of subject *i*'s parameter values (θ), and
 - ϵ_{ij} is the residual error of subject *i*'s *j*th observation.
- The elements of Θ_i are usually $\theta_i = \theta \cdot e^{\eta}$, where
 - $\ \theta$ is the typical value for a parameter and
 - $-~\omega^{\text{2}}$ is the variance of η values.

Pyry Välitalo, University of Kuopio, 1.10.2009

Advantages

- Studies in the target population
- Sparse sampling (only 2 3 samples / subject) possible
 - Routine sampling in Phase II/III.
 - Special populations (Pediatrics, cancer/AIDS, hemophilia, critical care patients, eldery, ...).
- Unlike in 'rich data sets' missing data not problematic
 - Imbalanced designs common
 - Different doses / subject.
 - Different number of samples / subject.
 - Different sampling times / subject.

Advantages

- Covariates part of the model
 - Fewer restrictions on in-/exclusion criteria.
 - 'What if' scenarios in planing further studies.
 - Full model allows prediction of 'real world PK' leads to more reliable dose regimen / posology.
 - An established and fully validated PopPK model allows precise dosing of individual patients – leading to *personalized medicine*.

Disadvantages

- Complex methodology
 - Might require simulations (optimal sampling times for sparse sampling); stepwise refinement of model during study.
 - Statistical models not trivial.
 - Expensive software with steep learning curve.
 - Carl Metzler: "PK Modeling Art or Science?"
- Time consuming
 - Easily ~10times longer than classical Two-Stage PK even for an experienced modeler.

Disadvantages

- Validation might require multiple studies
 - Internal validation:
 Use only a part of the study's data to set up a model and compare predictions with the other part.
 - External validation:
 Predictions vs. another study
- Cost/Benefit ratio
 - Unclear beforehand whether the model will give more than a trivial result (like: concentrations depend on body weight).

Example

• ADVATE, 19 patients, short infusion, rich data set, 2-comp model, covariates: age on V_1 , *CL* and body weight on V_1 , V_2 , *CL*; FOCE ELS

Pharmacokinetic Issues

Thank You! Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

universitäts klinikumbonn

PopPK References

Sheiner LB, Rosenberg B, and KL Melmon Modelling of individual pharmacokinetics for computer-aided drug dosage Comput Biomed Res 5(5), 441-59 (1972) Sheiner LB and SL Beal NONMEM Users Guide San Francisco: Division of Pharmacology: Univ. of California (1979) Sheiner LB and SL Beal Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data J Pharmacokin Biopharm 8(6), 553–71 (1980) Sheiner LB and SL Beal Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experi-mental pharmacokinetic data J Pharmacokin Biopharm 9(5), 635–51 (1981) Sheiner LB and SL Beal Some suggestions for measuring predictive performance J Pharmacokinet Biopharm 9(4), 503–12 (1981) **Beal SL and LB Sheiner** Estimating population kinetics Crit Rev Biomed Eng 8(3), 195–222 (1982)

Sheiner LB and SL Beal Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data J Pharmacokin Biopharm 11(3), 303–19 (1983) A Mallet A maximum likelihood estimation method for random coefficient regression models Biometrika 73(3), 645-56 (1986) Sheiner LB and SL Beal A note on confidence intervals with extended least squares parameter estimation J Pharmacokin Biopharm 15(1), 93–8 (1987) Mallet A, Mentré F, Gilles J, Kelman AW, Thomson AH, Bryson SM, and **B** Whiting Handling covariates in population pharmacokinetics, with an application to gentamicin Biomed Meas Infor Contr 3, 138–46 (1988) Lindstrom M and D Bates Nonlinear Mixed Effects Models for Repeated Measures Data Biometrics 46(3), 673-87 (1990) Gelfand AE and AFM Smith Sampling-Based Approaches to Calculating Marginal Densities J Am Stat Assoc 85(410), 398–409 (1990)

IAMES'S

PopPK References

Thomas A, Spiegelhalter DJ, and WR Gilks BUGS: a program to perform Bayesian inference using Gibbs sampling. In: Bayesian Statistics, Bernardo JM, Berger JO, Dawid AP, and AFM Smith (eds), vol. 4 Oxford University Press: Oxford, UK, 837–42 (1992) Mentré F and R Gomeni A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics J Biopharm Stat 5(2), 141–58 (1995) Pinheiro J and D Bates Mixed-Effects Models in S and S-PLUS Springer: New York, USA (2000) Beal SL, Sheiner LB, and AJ Boeckmann NONMEM users guides (1989–2006) icon development solutions: Ellicott City, MD, USA Zhang L, Beal SL, and LB Sheiner Simultaneous vs. sequential analysis for population PK/PD data I: bestcase performance J Pharmacokinet Pharmacodyn 30(6), 387–404 (2003) Zhang L, Beal SL, and LB Sheiner Simultaneous vs. sequential analysis for population PK/PD data I: robustness of methods J Pharmacokinet Pharmacodyn 30(6), 405–16 (2003)

> LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Kuhn E and M Lavielle

Maximum likelihood estimation in nonlinear mixed effects models Comput Stat Data Anal 49(4), 1020-38 (2005) Girard P and F Mentré A comparison of estimation methods in nonlinear mixed effects models using a blind analysis PAGE Meeting: Pamplona, Spain (16–17 June 2005) http://www.page-meeting.org/page/page2005/PAGE2005008.pdf **DJ Lunn** Bayesian analysis of population pharmacokinetic / pharmacodynamic models. In: Probabilistic Modeling in Bioinformatics and Medical Informatics, Husmeier D, Dybowski R and S Roberts (eds). Springer: London, UK, 351-70 (2005) Bauer RJ, Guzy S, and C Ng A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples AAPS J 9(1), E60-83 (2007) Lunn D et al. The BUGS project: Evolution, critique and future directions Statist Med 28(25), 3049-188 (2009) DOI: 10.1002/sim.3680

PopPK References

Lunn D et al.

Combining MCMC with 'sequential' PKPD modelling

J Pharmacokinet Pharmacodyn 36(1), 19–38 (2009)

DOI: 10.1007/s10928-008-9109-1

Pandhard X and A Samson

Extension of the SAEM algorithm for nonlinear mixed models with 2 levels of random effects Biostatistics 10(1), 121–35 (2009)

P Bonate

Pharmacokinetic-Pharmacodynamic Modeling and Simulation Springer Verlag: New York, USA (2nd ed. 2011)

Neely MN et al.

Accurate Detection of Outliers and Subpopulations With Pmetrics, a Nonparametric and Parametric Pharmacometric Modeling and Simulation Package for R

Therapeutic Drug Monitoring 34(4), 467–76 (2012)

Chan PLS et al.

The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects J Pharmacokinet Pharmacodyn 38(4), 41–61 (2011)

DOI: 10.1007/s10928-010-9175-z

FDA/CDER/CBER

 Guidance for Industry. Population Pharmacokinetics (February 1999) <u>http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072137.pdf</u>

EMA/CHMP

 Guideline on the Role of Pharmacokinetics in the Development of Medicinal Products in the Paediatric Population
 EMEA/CHMP/EWP/147013/2004 (June 2006)

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideli ne/2009/09/WC500003066.pdf

 Guideline on Reporting the Results of Population Pharmacokinetic Analyses

CHMP/EWP/185990/06 (June 2007)

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideli ne/2009/09/WC500003067.pdf

