

Arbeitsgemeinschaft für angewandte Humanpharmakologie e.V.

How to measure what happens in pharmacokinetics

PK metrics of relevance!

Terminology

Estimates obtained by a PK model: PK parameters

- Primary parameters f, V, CL, micro rate constants (k_a , k_e , k_{12} , k_{21} , ...), macro constants (A, B, C; α , β , γ , ...), etc.
- Secondary parameters derived from primary ones & the model $C_{\text{max}}/t_{\text{max}}$, $t_{1/2}$, AUC_{0-t} , $AUC_{0-\infty}$, ...
- Results obtained by Noncompartmental Analysis:
 PK metrics
 - Either directly measured $(C_{\text{max}}/t_{\text{max}})$ or
 - calculated by rather simple numerical methods $(\lambda_7/t_{1/2}, AUC_{0-t}, AUC_{0-\infty}, ...)$

Noncompartmental Analyis

- NCA aka SHAM (Shape, Height, Area, Moments)
 - PK metrics (plasma)
 - Single dose
 - Extent of Absorption (EEA, ...), Total Exposure (USA):
 AUC (Area Under the Curve)
 - » In most jurisdictions the PK metric for BE is AUC_{0-t}, where t is the last time point with a quantifiable concentration
 - » EEA: For IR products with a long half life AUC_{0-72h} is sufficient
 - » USA and EEA (CR products only): additionally $AUC_{0-\infty}$
 - Rate of Absorption (EEA, ...), Peak Exposure (USA): C_{max}
 - $-t_{\text{max}}$ (Russia, Eurasian Economic Area, ...)
 - Rarely relevant
 - » $t_{75\%}$, POT-25 (Plateau time or peak occupancy time; time span where $C(t) \ge 75\%$ C_{max} : Russia for modified release products)
 - » MRT (Mean of Residence Times)
 - » Therapeutic Occupancy Time (time span where C(t) ≥ some given limit, e.g., the MIC)

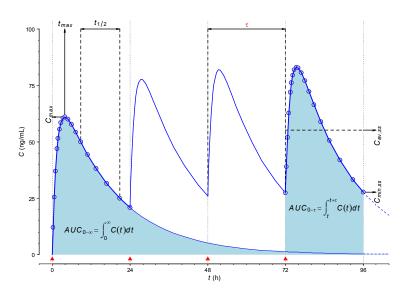
Noncompartmental Analyis

Multiple dose

- Extent of Absorption (EU, ...), Total Exposure (USA): $AUC_{0-\tau}$ (AUC covering the dosing interval τ) If chronopharmacological variation and more than o.a.d. regimen: $AUC_{\rm ss,24h}$ No extrapolation of AUC in any case
- Rate of Absorption (EU, ...), Peak Exposure (USA): $C_{\rm ss,max}$
- Minimum concentration
 - $C_{\rm ss,min}$ ($C_{\rm trough}$: located anywhere within τ ; originators) $C_{\rm ss,min}$ (C_{τ} : concentration at the end of the dosing interval; generics)
- *PTF* (Peak-to-Trough Fluctuation) $(C_{ss,max} - C_{ss,min}) / C_{ss,av}$, where $C_{ss,av} = AUC_{0-\tau} / \tau$
- Mentioned in some GLs but practically obsolete due to its extreme variability
 Swing = (C_{ss max} C_{ss min}) / C_{ss min}

Noncompartmental Analyis

- PK metrics obtained by NCA depend much more on the sampling schedule than PK parameters
 - Examples
 - It is unlikely that one is able to 'catch' the true $C_{\rm max}/t_{\rm max}$ in every subject. Hence, frequent sampling around $t_{\rm max}$ mandatory.
 - To obtain a reliable estimate of the apparent elimination λ_z , at least three samples required.
- According to all guidelines in BA/BE only NCA is acceptable
 - Rationale
 - PK models require exhaustive validation and documentation. The same data set does not necessarily give the same results with different software.
 - NCA is independent from software. Paper, pencil, brain...

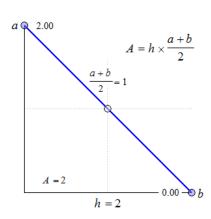

PK model | AUC

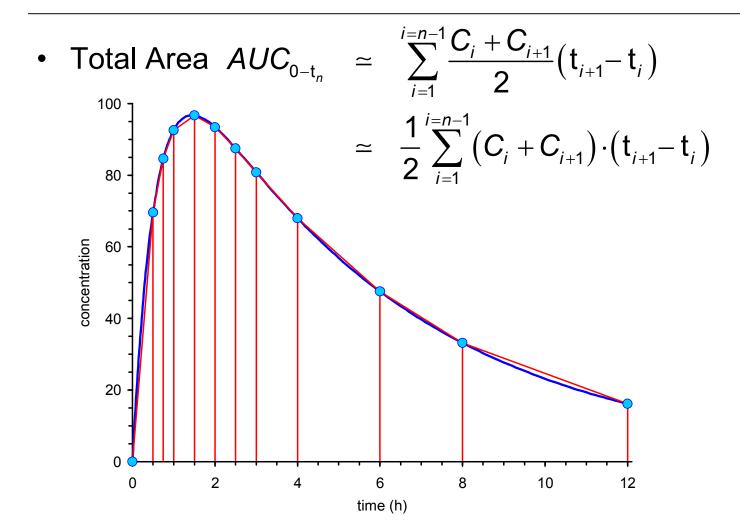
- AUC is the integral of the concentration-time curve
 - One compartment, extravascular dose, no lag-time

$$C(t) = \frac{f \cdot D}{V} \frac{k_{a}}{k_{a} - k_{e}} \left(e^{-k_{e} \cdot t} - e^{-k_{a} \cdot t} \right)$$

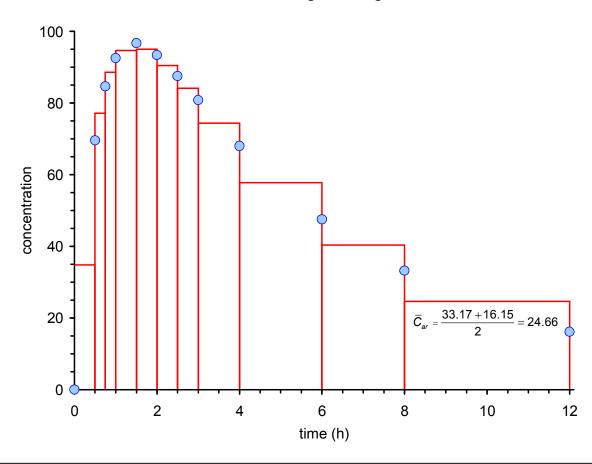
$$AUC_{0-\infty} = \int_0^\infty C(t) dt = \frac{f \cdot D}{CL}$$

Superposition Principle of linear PK $AUC_{0-\tau} \approx AUC_{0-\infty}$

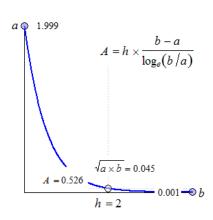

NCA | AUC


- In NCA numeric approximation of the integral is required
 - Linear trapezoidal method
 - Linear-up / logarithmic-down trapezoidal method
 - Of academic interest
 - Cubic splines
 - Lagrange polynomials
 - · Simpson's rule

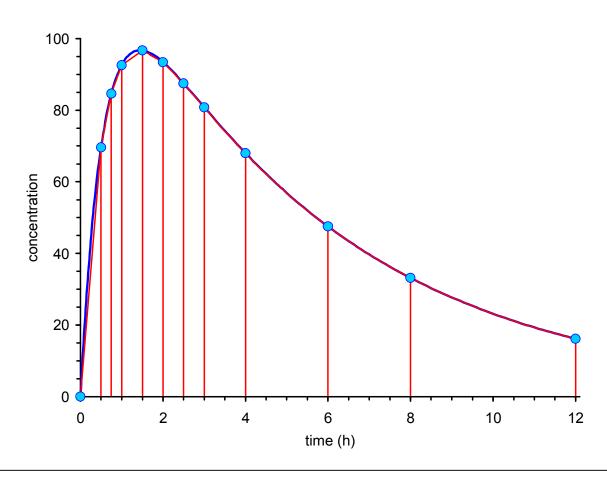
- Linear interpolation between data points
- Sections are represented by trapezoids
- Sides a, b are two neighbouring concentrations
- h is the time interval
- Area of one trapezoid $A = \frac{a+b}{2}h$



arithmetic means of neighbouring concentrations

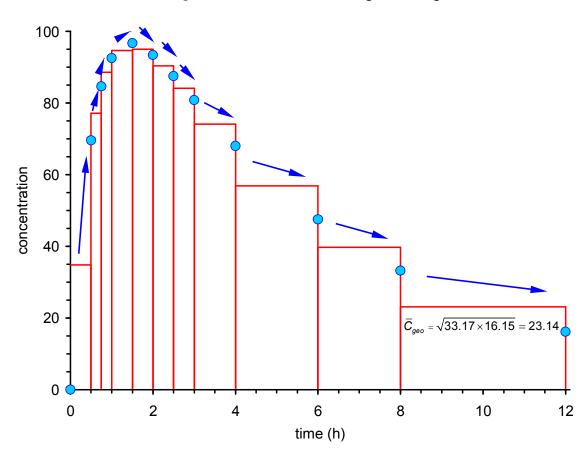

- Positive bias
 - Overestimates AUC in both the absorption and distribution / elimination phases
- Originated in the dark ages when profiles were plotted on paper, cut out, weighed on an analytical scale, and compared to the paper-weight of known area (e.g., A4 of 80 g/m²: 4.9896 g / 623.7 cm²)
- Should have been thrown into the scientific waste-can with the invention of pocket calculators decades ago
- In general elimination follows an exponential decrease

$$C(t) = \frac{f \cdot D}{V} \frac{k_{a}}{k_{a} - k_{e}} \left(e^{-k_{e} \cdot t} \right)$$



- Much better alternative:
 Linear-up / logarithmic-down trapezoidal method
- Sections with *increasing or equal* concentrations $(C_{i+1} \ge C_i)$ calculated by the linear trapezoidal method
- Sections with decreasing concentrations
 (C_{i+1} < C_i) calculated by the logarithmic-linear trapezoidal method, i.e.,

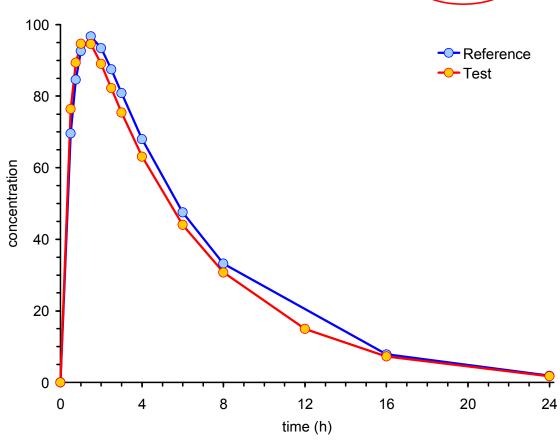
$$AUC_{t_i-t_{i+1}} \simeq \frac{C_{i+1}-C_i}{\log_e \frac{C_{i+1}}{C_i}} (t_{i+1}-t_i)$$



arithmetic / geometric means of neighbouring concentrations

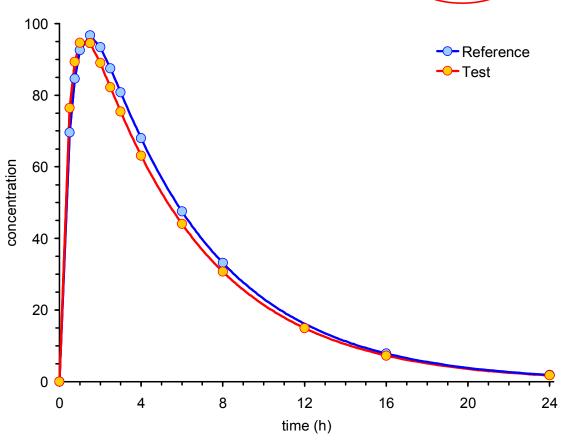
- Avoids positive bias in distribution / elimination phases
- Suitable for both i.v. and e.v. administrations
- Suitable for multiphasic profiles
 - Secondary peaks due to enterohepatic recycling
 - Pulsatile release products
 - If AUC of more than one profile has to be calculated (e.g., two doses with τ 12 h and AUC_{0-24h} is required due to circadian variation in PK)
- Implemented in standard PK software for decades
- Only exception where the method performs worse than the linear trapezoidal
 - Drugs following Michaelis-Menten PK (e.g., alcohol)

AUC_{0-t} | Problem 1



- Recap: In most jurisdictions the PK metric for BE is
 AUC_{0-t}, where t is the last time point with a quantifiable
 concentration
- Ideally we are able to calculate AUC_{0-t}
 - for all treatments
 - in all subjects
- What if
 - a sample was missing (e.g., vial broken in centrifugation)?
- Example
 - True T/R-ratio 95%, 12 h sample (R) missing
 - Comparison of linear and lin-up / log-down trapezoidal methods

*AUC*_{0-t} | Problem 1



*AUC*_{0-t} | Solution

*AUC*_{0-t} | Problem 2

What if

- The bioanalytical method was sensitive enough to measure all concentrations but a sample at the last time point (t) was missing (e.g., vial broken in centrifugation)?
- The bioanalytical method was sensitive enough to measure most low concentrations but there were a few values at t below the LLOQ (lower limit of quantification)?

AUC_{0−t} | Problem 2

 In BE we administer the same molar doses and assume constant inter-occasion clearances. Hence,

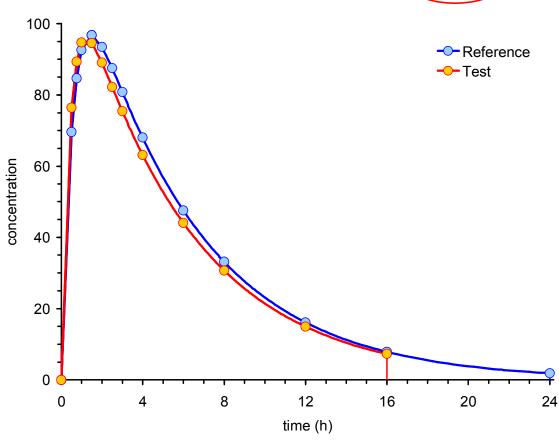
$$AUC_{0-t,T} = \frac{f_T \cdot D_T}{CL_T}$$
 and $AUC_{0-t,R} = \frac{f_R \cdot D_R}{CL_R}$

with
$$D_T = D_R$$
 and $CL_T = CL_R$ we get $\frac{f_T}{f_R} = \frac{AUC_{0-t,T}}{AUC_{0-t,R}}$

 Example: t for one product is 24 h but due to missingness for the other one occasionally 16 h. If we follow guidelines blindly, the estimate will be biased because

$$\frac{f_{\mathsf{T}}}{f_{\mathsf{R}}} \neq \frac{AUC_{_{0-16,\mathsf{T}}}}{AUC_{_{0-24,\mathsf{R}}}}$$

AUC_{0-t} | Problem 2



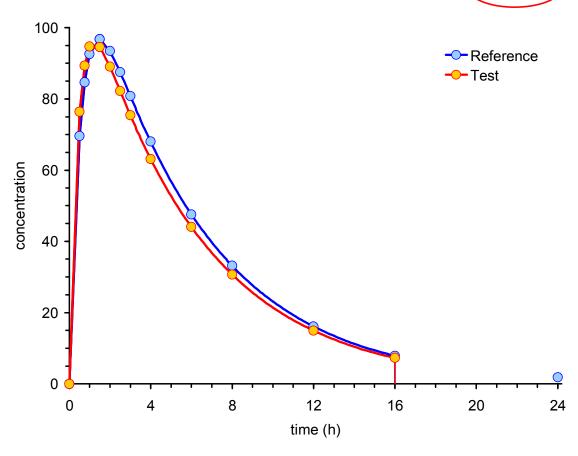
- Only if the true relative BA-ratio is exactly 1, the chance to observe concentrations at t <LLOQ is similar for all treatments and the estimate will be unbiased
- If the true BA-ratio is ≠ 1, the estimate will be biased away from one (the difference between treatments will be exaggerated)
 - Regulators don't care because the patient's risk is not affected and the chance to demonstrate BE decreases
 - Applicants should care since the producer's risk of failure increases

*AUC*_{0−t} | Problem 2

AUC_{0-t} | Solutions

- Impute missings or BQLs by their estimates
 - Requires reliable estimate of λ_z
 - Implemented only in the current release of Phoenix/WinNonlin
 - In other software or 'by hand' according to

$$oldsymbol{C}_{\!\scriptscriptstyle t} = e^{\ln \left(\hat{\mathcal{C}}_{\!\scriptscriptstyle 0}
ight) - \hat{\lambda}_{\!\scriptscriptstyle z} \cdot t}$$


- Compare AUCs in each subject where both treatments showed concentrations ≥LLOQ*
 - Example: $t_{last,T}$ = 16 h, $t_{last,R}$ = 24 h, t_{last} (Common) = 16 h $\frac{f_T}{f_R} = \frac{AUC_{_{0-16,T}}}{AUC_{_{0-16,R}}}$
 - * Fisher D, Kramer W, Burmeister Getz E. *Evaluation of a Scenario in Which Estimates of Bioequivalence Are Biased and a Proposed Solution:* t_{last} (Common).

 J Clin Pharm. 2016;56(7):794–800. doi:10.1002/jcph.663. Open access.

*AUC*_{0-t} | Solution

AUCt.comm (R) 650, AUCt.comm (T) 618, T/R 95.0%, bias 0.00%

AUC_{0-t} | Problem 3

What if

- a substantial number of samples in the late part of a profile is missing?
- Such a case might happen if a subject drops out from a study
- $AUC_{0-t(common)}$ will not necessarily help because according to most GLs a 'reliable estimate' of the extent of absorption is given if $AUC_{t-\infty}$ is ≤20% of $AUC_{0-\infty}$
- However, regulations ≠ science
 - For IR products ($k_a \gg k_e$) already at $2 \times t_{max}$ absorption is practically complete (93.75%); at $4 \times t_{max}$ 99.61% are absorbed*
 - In the late part of the profile distribution / elimination prevails which is drug-specific and not relevant for detecting differences between treatments
 - * Scheerans C, Derendorf H, Kloft C. Proposal for a Standardised Identification of the Mono-Exponential Terminal Phase for Orally Administered Drugs. Biopharm Drug Dispos. 2008;29(3):145–57. doi:10.1002/bdd.596.

AUC_{0-t} | Solution

EMA BE-GL Section 4.1.8 (2010)

– Subjects should not be excluded from the statistical analysis if $AUC_{(0-t)}$ covers less than 80% of $AUC_{(0-\infty)}$, but if the percentage is less than 80% in more than 20% of the observations then the validity of the study may need to be discussed.

For optimistic ones

Cross fingers and prepare for the discussion

For very brave ones

- Give a justification in the protocol that absorption is already complete even at very early time points
- Use AUC_{0-t(common)}

For brave ones

 As above but state in the protocol a limit for the earliest acceptable truncation time; if earlier, exclude the subject from the comparison of AUCs

AUC_{0-t} | Solution

For wary ones

- Exclude the subject from the comparison of AUCs but if C_{max} is well defined (e.g., a couple of decreasing concentrations after t_{max}) keep the subject in the comparison of C_{max}
- Rationale
 - In general the variability of C_{\max} is substantially higher than the one of AUC and therefore, likely the study was powered for C_{\max}
 - Although power to show BE will slightly decrease for AUC, the overall power of the study will not be compromised
- Prolonged (aka sustained) release formulations
 - By their biopharmaceutical design (flip-flop PK: $k_a \le k_e$) the *late part* of the profile represents *absorption*
 - Exclude the subject from the comparison of AUCs

C_{max} | Problem & Solutions

- What if
 - samples in the area of t_{max} are missing?
- Exclude the subject from the comparison of $C_{\rm max}$
 - Power depends on the CV (coefficient of variation), the GMR (geometric mean ratio), and n (sample size) where the rank order of their influence on power is $GMR \gg CV > n$
 - Power will be compromised but to a much lesser degree than many people expect
- For curageous ones
 - Keep the observed C_{max} (which potentially is lower than the true one)
 - Impute the highest concentration observed in any of the other subjects (irrespective of the treatment) and perform a sensitivity analysis

NCA | λ_z

- Recap: To obtain a reliable estimate of the apparent elimination λ_{7} , at least three samples required.
 - The automatic algorithm based on maximizing R^2_{adj} is known to be 'greedy' (*i.e.*, reaches for too early time points) and
 - has difficulties with 'flat' profiles (e.g., ill-defined C_{max} of CR products) and
 - regularly fails completely for multiphasic release products
 - Alternative: TTT method (Scheerans et al. 2008)
 - Implemented in the open source package <u>bear</u> for <u>R</u>.
 - Two-step procedure in Phoenix/WinNonlin
 - Estimate t_{max} in one run of the NCA module
 - Set $2 \times t_{max}$ as the start time in a second run
 - Visual inspection of fits by a pharmacokineticist (with optional correction) is <u>mandatory</u> in all methods