

Basic Statistics for BE

Helmut Schütz

Keep in memory...

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.

Karl R. Popper

Even though it's *applied* science we're dealin' with, it still is – *science*!

Leslie Z. Benet

Why logarithmic transformation of the data?

Like most biologic variables PK metrics (e.g., AUC, C_{max}) follow a log-normal distribution

- If they would follow a *normal distribution* ('bell curve') the range of possible values by definition would be $[-\infty, +\infty]$
 - However, negative concentrations are not possible
- The log-normal distribution covers a range of [>0, +∞]
 - In statistical methods we apply in bioequivalence (e.g., the ANOVA)
 we need normal distributed data
 - If we log-transform the original data we get exactly what we need
 - Always use the natural logarithm (base e) not the decadic logarithm (base 10)
 - At the end of the analysis we back-transform the result (e.g., from the 90% confidence interval of [-0.1832, +0.0432] we get [$e^{-0.1832}$, $e^{+0.0432}$] or [83.26%, 104.41%])

Why logarithmic transformation of the data?

Justification

- The basic equation of PK (after an extravascular dose) is $AUC = f \times D / CL$
- In BE we are interested in the fraction absorbed (f), which leads to $f = AUC \times CL / D$
 - which is a *multiplicative* model
 - We get an additive model (needed in ANOVA) by taking logs log(f) = log(AUC) + log(CL) log(D)
- Actually we are interested in comparing f_{Test} with $f_{Reference}$
 - In the study we obtain AUC_{Test} and AUC_{Reference}
 - We assume (!) that $D_{Test} = D_{Reference}$ and $CL_{Test} = CL_{Reference}$
 - Given that, we get
 - $-\log(f_{Test}) \log(f_{Reference}) = \log(AUC_{Test}) \log(AUC_{Reference})$ or
 - f_{Test} / f_{Reference} = AUC_{Test} / AUC_{Reference}

Why logarithmic transformation of the data?

Example

	Reference	log(R)	Test	log(T)	Δlog	Ratio T/R
AUC	200	5.2983	190	5.2470	-0.0513	95.00%
CL	0.2	-1.6094	0.2	-1.6094		
D	50	3.9120	50	3.9120		
f	80%	-0.2231	76%	-0.2744	-0.0513	95.00%

- The Test has a lower absorption (76%) than the Reference (80%)
 - We assume that the administered doses are equal, as are the clearances (property of the drug, not the formulation)
 - Then we can estimate $f_{Test}/f_{Reference}$ from the ratio of *AUC*s or the difference of log-transformed *AUC*s (Δ log)
- Practically the analysis is done on log-transformed data
 - We get $f_{Test}/f_{Reference}$ by the back-transformation of Δ log: $e^{-0.0513} = 95\%$

Why geometric means instead of arithmentic means?

In statistics we need an accurate ('unbiased') estimate of the location

- The best unbiased estimate of the location of the normal distribution is the arithmetic mean
- The best unbiased estimate of the location of the log-normal distribution is the geometric mean
 - Since we know that concentrations and most derived PK metrics (exception: t_{max}) follow a log-normal distribution

we have to use their geometric means

- The log-normal distribution is skewed to the right
 - The arithmetic mean is always larger than the geometric mean
 - If we would use the arithmetic mean, the estimate would be positively biased

Descriptive statistics (transformed and untransformed)

In order to describe the data accurately we have to use suitable descriptive statistics

- If we report a certain location (mean, median, ...) and a dispersion (standard deviation, CV, percentiles, ...) we *implicitly* assume a specific distribution
- Arithmetic mean, standard deviation
 - normal distribution (wrong in PK...)
- Geometric mean, CV
 - log-normal distribution (concentrations, C_{max} , AUC, ...)
 - back-transformed arithmetic mean of log-transformed data
 geometric mean of raw data
- Median, percentiles, range
 - discrete distribution (t_{max} , t_{lag})

	raw	log		
ata	1.0000	0.0000		
	2.0000	0.6931		
	3.0000	1.0986		
arithm. mean	2.0000	0.5973		
geom. mean	1.8171			
earithm. mean(log)		1.8171		

Descriptive statistics (transformed and untransformed)

Bad example from the FDA's files (mesalamine, n = 238)

Wrong: arithmetic means ± SD

Correct: geometric means ± SD

line plot instead of XY-plot

What does the 90% confidence interval mean?

From the study (in statistical terms a 'sample') we

- estimate a mean treatment effect (in BE the point estimate of the Test/Reference ratio)
- The PE is the best unbiased estimate of the treatment effect in the population of patients

However, we don't know the 'true' value

- A confidence interval around the PE tells us where the 'true' value might be
- If we use a 90% confidence interval, a wrong decision (i.e., falsely declaring BE of a product which is not) is possible with α
 - α is the probability of the Type I Error (the patient's risk) and commonly fixed at 5%
 - The 90% CI is based on $100(1-2\alpha)$

Excursion: Error(s)

All formal decisions are subjected to two 'Types' of Error.

- α: Probability of Type I Error (aka Risk Type I)
- β: Probability of Type II Error (aka Risk Type II)

Example from the justice system – which presumes that the defendant is *not guilty*:

Verdict	Defendant innocent	Defendant guilty
Presumption of innocence rejected (guilty)	wrong	correct
Presumption of innocence accepted (not guilty)	correct	wrong

Excursion: Hypotheses

In statistical terminology

- Null hypothesis (H_0) : innocent
- Alternative hypothesis (H_a aka H₁): guilty

Decision	Null hypothesis true	Null hypothesis false
H ₀ rejected	Type I Error	Correct (accept <i>H_a</i>)
Failed to reject H ₀	Correct (accept H ₀)	Type II Error

In BE the Null hypothesis is bioinequivalence $(\mu_T \neq \mu_R)!$

Decision	Null hypothesis true	Null hypothesis false
H ₀ rejected	Patient's risk (α)	Correct (BE)
Failed to reject H ₀	Correct (not BE)	Producer's risk (β)

Excursion: Type I Error

- α : Patient's risk to be treated with an inequivalent formulation (H_0 falsely rejected)
- BA of the test compared to reference in a *particular* patient is considered to be risky *either* below 0.80 *or* above 1.25.
 - If we keep the risk of *particular* patients at α 0.05 (5%), the risk of the entire *population* of patients (where BA <0.80 *and* >1.25) is 2α (10%) expressed as a confidence interval: $100(1 2\alpha) = 90\%$.
 - However, since in a particular patient BA cannot be <0.80 and >1.25 at the same time, the patient's risk from a 90% CI is still 5%!

patient population [0.80,1.25]

What does ±20% mean and where does it come from?

Clinically not relevant difference

- Based on PK/PD but extrapolated to similarity of safety and efficacy in the patient population
 - Depends on the dose-response curve! NTID (steep curve), HVD (flat curve):

What does ±20% mean and where does it come from?

Clinically not relevant difference

- Predefined by the authority
 - A difference ∆ of ≤20% is considered to be clinically not relevant for 'uncomplicated drugs'
 - The limits [L, U] of the acceptance range for BE are fixed to $log(1 \Delta) = log((1 \Delta)^{-1})$ or $L \sim -0.2231$ and $U \sim +0.2231$, which are back-transformed 80 125%
 - Smaller ∆ for Narrow Therapeutic Index Drugs (NTIDs)
 - EMA \triangle 10% leads to BE-limits of 90.00 111.11%
 - FDA Scaled (narrowed) based on the variability of the reference
 - Larger ∆ for Highly Variable Drugs / Drug Products (HVD(P)s)
 - EMA Δ >20% scaled based on the variability of the reference (CV_{wR}), which leads to BE-limits expanded to up to 69.84 143.19%
 - HC like EMA, but BE-limits of up to 66.7 150.0%
 - FDA Scaled based on the variability of the reference (no upper limit)

What does ±20% mean and where does it come from?

Clinically not relevant difference

- Bioequivalence is not a scientific concept
 - state a hypothesis
 - perform experiments in order to challenge the hypothesis
 - accept the hypothesis as long as it is not falsified
- Assuming ±20% to be not clinically relevant was an ad hoc concept
- However, empiric evidence of more almost 40 years showed that it 'works' ("No dead people lie in the streets...")
- It is a common misconception that BE-limits of 80–125% can lead to approval of products which differ by 45%
 - A survey of 1,636 BE studies submitted to the FDA within 1996–2005 showed \triangle of 3.19% (±2.72) for AUC_t and 4.50% (±3.57) for C_{max}
 - In a strict sense switching between generics is not supported by (A)BE;
 nevertheless, it seems to work in practice

Calculation of point estimate and its 90% CI

Example (2×2 crossover, 8 subjects, 1 dropout, CV_{intra} ~10%)

				period					
subject	sequence	1	2	1 (log)	2 (log)		LSM (1) LSM (2)		
1	TR	92.4	97.1	4.526	4.576	Т	4.575 4.448	1	
2	TR	86.4	98.0	4.459	4.585	LSM (T)	4.511	mean (T)	4.520
4	TR	114.0	97.9	4.736	4.584	GLSM (T)	91.0	g. mean (T)	91.9
7	TR	97.4	94.6	4.579	4.550				
3	RT	100.9	94.9	4.614	4.553	R	4.589 4.574		
5	RT	101.1	71.3	4.616	4.267	LSM (R)	4.581	mean (R)	4.580
6	RT	93.4	92.1	4.537	4.523	GLSM (R)	97.6	g. mean (R)	97.5
8	RT	105.2	-	-	_				
n ₁ (se	quence TR)	4	degr	of freedom	(n_1+n_2-2)				
n ₂ (se	quence RT)	3	5						
M	ean Squared	d Error	(MSE)	0.0108184 (1	rom ANOV	A)			
	Standard E	rror (SE) of Δ	0.056173 =	$\sqrt{[0.5 imes MSE]}$	[×(1/ <i>n</i> ₁ +1/ <i>n</i> ₂)]			
		t_{α}	= 0.05, df	2.0150					
			90% C	$ = \Delta \pm t_{\alpha = 0.0}$	_{5, df} × SE				
	Δ = LSM	(T) – LS	M (R)	-0.0700	93.24%	PE (GMR = e^{Δ})			
	I	ower 90	% CL	-0.1832	83.26%	,			
	u	pper 90	% CL	0.0432	104.41%	90% CI			

Calculation of point estimate and its 90% CI

Example (2×2 crossover, 8 subjects, 1 dropout, CV_{intra} ~10%)

- Important
 - Always use the Geometric Least Square Means not the geometric means of treatments
 - Only if a design is balanced, i.e., there are an equal number of subjects in each sequence, GLSM equals the geometric mean
 - In the example (unbalanced; $n_1 = 4$, $n_2 = 3$): LSM (T) 4.511 (GLSM 91.0) → PE 93.24% LSM (R) 4.581 (GLSM 97.6) mean (T) 4.520 (geom. mean 91.9) → PE 93.19% mean (R) 4.580 (geom. mean 97.5)
 - Always use the formula which takes subjects / sequence into account
 - There is a 'simple' formula which is *only* correct if a study is balanced, namely $SE = \sqrt{(MSE/n_{ps})}$, where $n_{ps} = (n_1 + n_2)/2$
 - In the example ($n_{ps} = 3.5!$): The 90% CI will be wrong (83.36–104.29% instead of 83.26–104.41%)

Calculation of point estimate and its 90% CI

Where to find the MSE in software's output

SAS

The GLM Procedure

Dependent Variable: AUC	!				
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	19	10.8915670	0.5732404	1.86	0.1891
Error	16	4.9439802	0.3089988		
Corrected Total	35	15.8355472			
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Treatment	1	1.0469949	1.0469949	3.39	0.0843
Period	1	0.1958572	0.1958572	0.63	0.4376
Seqence	1	1.3052864	1.3052864	2.50	0.1332
Subject (Sequence)	16	8.3434285	0.5214643	1.69	0.1528

Phoenix/WinNonlin

WINNONLIN LINEAR MIXED EFFECTS MODELING / BIOEQUIVALENCE 8.0.0.3176 Core Version 30Jan2014

Model Specification and User Settings
Dependent variable: AUC

Partial	Sum	of	Squares
T GT CTGT	Oun	<u> </u>	oquarco

Hypothesis	DF	ss	MS	F_stat	P_value
Sequence	1	1.30529	1.30529	2.50312	0.1332
Sequence*Subject	16	8.34343	0.521464	1.68759	0.1528
Treatment	1	1.04699	1.04699	3.38835	0.0843
Period	1	0.195857	0.195857	0.633844	0.4376
Error	16	4.94398	0.308999		

Excursion: Treatment effect

Statistical *significant* ≠ clinically *relevant*

- For any given T/R-ratio and variability one will get a significant treatment effect (in the ANOVA p <0.05) if the sample size is only large enough
 - The confidence interval narrows with \sqrt{N} , i.e., if one uses a four times larger sample size, the CI will be ~half as wide
 - If the CI does not include 100% any more, treatments will significantly differ
 - However, if the 90% CI is within the acceptance range, this difference is clinically not relevant

Excursion: Period effect

In crossover-studies the period effect is not relevant

- Due to the randomization all treatments will be affected by a true period effect to the same degree
- Period effects mean out, i.e., are handled in the ANOVA
- Previous example, all data in the 2nd period multiplied by ten
- Exactly the same
 PE and 90% CI

				period				
subject	sequence	1	2	1 (log)	2 (log)		LSM (1)	LSM (2)
1	TR	92.4	971	4.526	6.878	Т	4.575	6.750
2	TR	86.4	980	4.459	6.888	LSM (T)	5.6	663
4	TR	114.0	979	4.736	6.887	GLSM (T)	28	7.9
7	TR	97.4	946	4.579	6.852			
3	RT	100.9	949	4.614	6.855	R	4.589	6.876
5	RT	101.1	713	4.616	6.569	LSM (R)	5.7	733
6	RT	93.4	921	4.537	6.825	GLSM (R)	30	8.8
8	RT	105.2	_	-	_			
	Δ = LSM	(T) – LS	M (R)	-0.0700	93.24%	PE (GMR = e^{Δ})		
	lower 90% CL			-0.1832	83.26%	90% CI		
	1	upper 90	% CL	0.0432	104.41%	30 /0 OI		

Excursion: Sequence effect

In crossover-studies an equal sequence effect is not relevant

- However, a true sequence effect (better: unequal carry-over)
 will bias the treatment effect
- There is no statistical method to correct for unequal carry-over
- Can only be avoided by design, i.e., a sufficiently long enough wash-out between periods
- Previous example, unequal carry-over (TR -5, RT +5)
- Biased PE and CI

				period				
subject	sequence	1	2	1 (log)	2 (log)		LSM (1)	LSM (2)
1	TR	92.4	92.1	4.526	4.523	Т	4.575	4.505
2	TR	86.4	93.0	4.459	4.533	LSM (T)	4.5	540
4	TR	114.0	92.9	4.736	4.532	GLSM (T)	93	3.7
7	TR	97.4	89.6	4.579	4.495			
3	RT	100.9	99.9	4.614	4.604	R	4.589	4.521
5	RT	101.1	76.3	4.616	4.335	LSM (R)	4.5	555
6	RT	93.4	97.1	4.537	4.576	GLSM (R)	95	5.1
8	RT	105.2	_	-	_			
	$\Delta = LSM(T) - LSM(R)$				98.52%	PE (GMR = e^{Δ})		
lower 90% CL			-0.1281	87.98%	90% CI			
	ι	upper 90	% CL	0.0983	110.33%	30 /0 OI		

Basic Statistics for BE

Thank You! Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at

