Special Topics

Helmut Schütz

Cinfa Statistics for Bioequivalence | Pamplona/Iruña, 24 April 2018

AUC_{0-t} | Problem 1

What if

- The bioanalytical method was sensitive enough to measure *all* concentrations but a sample at the last time point (*t*_{*last*}) was missing (*e.g.*, vial broken in centrifugation)?
- The bioanalytical method was sensitive enough to measure *most* low concentrations but there were a few values at *t* below the LLOQ (lower limit of quantification)?

AUC_{0-t} | Problem 1

In BE we administer the same molar doses and assume constant inter-occasion clearances. Hence,

$$AUC_{0-t,T} = \frac{f_T \cdot D_T}{CL_T} \text{ and } AUC_{0-t,R} = \frac{f_R \cdot D_R}{CL_R}$$

with $D_T = D_R$ and $CL_T = CL_R$ we get $\frac{f_T}{f_R} = \frac{AUC_{0-t,T}}{AUC_{0-t,R}}$

Example: t_{last} for one product is 24 h but due to missingness for the other one occasionally 16 h. If we follow guidelines blindly, the estimate will be biased because

$$\frac{f_{T}}{f_{R}} \neq \frac{AUC_{0-16,T}}{AUC_{0-24,R}}$$

nr ·

🗋 cinfa

AUC_{0-t} | Problem 1

Only if the true relative BA-ratio is *exactly* 1, the chance to observe concentrations at t_{last} <LLOQ is similar for all treatments and the estimate will be unbiased

If the true BA-ratio is \neq 1, the estimate will be biased away from one (*i.e.*, the difference between treatments will be exaggerated)

- Regulators don't care because the patient's risk is not affected and the chance to demonstrate BE decreases
- Applicants should care since the producer's risk of failure increases

AUC_{0-t} | Problem 1

Ocinfa

AUC_{0-t} | Solutions

Impute missings or BQLs by their estimates

- Requires reliable estimate of λ_z
- Implemented only in the current release of Phoenix/WinNonlin
- In other software or 'by hand' according to

$$\boldsymbol{C}_t = \boldsymbol{\mathsf{e}}^{\log\left(\hat{\boldsymbol{C}}_0\right) - \hat{\boldsymbol{\lambda}}_z \cdot \boldsymbol{\mathsf{f}}}$$

Compare AUCs in each subject where *both* treatments showed concentrations **>LLOQ***

• Example: $t_{last,T}$ = 16 h, $t_{last,R}$ = 24 h, t_{last} (Common) = 16 h

$$\frac{f_T}{f_R} = \frac{AUC_{0-16,T}}{AUC_{0-16,R}}$$

* Fisher D, Kramer W, Burmeister Getz E. *Evaluation of a Scenario in Which Estimates of Bioequivalence Are Biased and a Proposed Solution: t_{last} (Common). Clin Pharm. 2016;56(7):794–800. <u>doi:10.1002/jcph.663</u>. <u>Open access</u>.*

AUC_{0-t} | Solution

AUCt.comm (R) 650, AUCt.comm (T) 618, T/R 95.0%, bias 0.00%)

7

AUC_{0-t} | Problem 2

What if

- a substantial number of samples in the late part of a profile is missing?
- Such a case might happen if a subject drops out from a study
- AUC_{0-t(common)} will not necessarily help because according to most GLs a 'reliable estimate' of the extent of absorption is given if AUC_{t-∞} is ≤20% of AUC_{0-∞}
- However, regulations \neq science
 - − For IR products ($k_a \gg k_e$) already at 2× t_{max} absorption is practically complete (93.75%); at 4× t_{max} 99.61% are already absorbed*
 - In the late part of the profile distribution / elimination prevails which is drug-specific and not relevant for detecting differences between treatments
- * Scheerans C, Derendorf H, Kloft C. *Proposal for a Standardised Identification of the Mono-Exponential Terminal Phase for Orally Administered Drugs.* Biopharm Drug Dispos. 2008;29(3):145–57. <u>doi:10.1002/bdd.596</u>.

AUC_{0-t} | Solution

EMA BE-GL Section 4.1.8 (2010)

- Subjects should not be excluded from the statistical analysis if $AUC_{(0-t)}$ covers less than 80% of $AUC_{(0-\infty)}$, but if the percentage is less than 80% in more than 20% of the observations then the validity of the study may need to be discussed.
 - For optimistic ones
 - Cross fingers and prepare for the discussion
 - For very brave ones
 - Give a justification in the protocol that absorption is already complete even at very early time points
 - Use AUC_{0-t(common)}
 - For brave ones
 - As above but state in the protocol a limit for the earliest acceptable truncation time; if earlier, exclude the subject from the comparison of AUCs

AUC_{0-t} | Solution

EMA BE-GL Section 4.1.8 (2010)

- For wary ones
 - Exclude the subject from the comparison of AUCs but if C_{max} is well defined (e.g., a couple of decreasing concentrations after t_{max}) keep the subject in the comparison of C_{max}
 - Rationale
 - » In general the variability of C_{max} is substantially higher than the one of *AUC* and therefore, likely the study was powered for C_{max}
 - » Although power to show BE will slightly decrease for *AUC*, the overall power of the study will not be affected
- Prolonged (aka sustained) release formulations
 - By their biopharmaceutical design (flip-flop PK: $k_a \le k_e$) the late part of the profile represents absorption
 - Exclude the subject from the comparison of AUCs

Special Case: Truncated AUC

Truncated AUC instead of AUC_{0-t} as the primary PK metric

- EMA
 - AUC_{0-72h} acceptable for all IR products
 - Stated as the method of choice in all product-specific guidances
 - Not necessary to extrapolate and show that 80% of $AUC_{0-\infty}$ are covered
 - Absorption is practically complete after $2-4 \times t_{max}$
 - A truncation time of 72 hours is very conservative and based on the observation in clinicial studies that within three days any formulation has left the GIT
 - Problematic for controlled release products
 - AUC_{0- ∞} is additionally required
 - A reliable estimate of λ_z is mandatory; might need longer sampling, since the late part of the profile represents absorption
 - However, once the formulation leaves the absorrption window (or the GIT) expect a rapid decrease in concentrations; don't use them to estimate λ_z

Dose Linearity and Proportionality

Various models exist

- The most simple one (dose proportionality) is employing conventional BE (90% CI) of dose-normalized PK metrics
 - Some authorities ask for a Bonferroniadjustment due to the multiple tests
 - Comparing only two dose-levels cannot detect a deviation from dose proportionality

tests	α	ρ _{α=0.05}	$\boldsymbol{\alpha}_{adj}$	% CI	p _{α,adj}
1	0.050	5.00%	0.0500	90.00	5.00%
2	0.050	9.75%	0.0250	95.00	4.94%
3	0.050	14.26%	0.0167	96.67	4.92%
4	0.050	18.55%	0.0125	97.50	4.91%
5	0.050	22.62%	0.0100	98.00	4.90%

• For assessing dose linearity commonly the 'power-model' is used $E(Y | x) = a \cdot x^b$ $\log(E(Y | x)) = \log(a) + b \cdot \log(x)$ where Y is a PK response (AUC, C_{max}), x the dose, a > 0, and $b \neq 0$

Dose Linearity and Proportionality

Various models exist

- 'Power-model'
 - The first form requires software for nonlinear regression
 - The second (linearized) form is a simple linear regression
 - The model is evaluated by examining the 95% confidence interval
 [L, U] of the exponent b for departure from one
 - Decision criteria
 - $\quad \text{if } 0.75 < L < 1.0 < 1.25$
 - if 1.0 < L < U < 1.25 or
 0.75 < L < U < 1.0

no departure from dose linearity slight departure from dose linearity, but no practical significance from dose linearity

- if L > 1.25 or U < 0.75

reject hypothesis of dose linearity

Dose Linearity and Proportionality

Various models exist

- 'Power-model'
 - Example: FIM biological, six dose levels, C_{max}
 - b 0.587 (95% CI: 0.471 0.704)
 - CV 7.25%, correlation 0.9446
 - Since U < 0.75, deviation from dose linearity

14

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>