

Comparative Bioavailability Studies Fundamentals and Common Pitfalls

Helmut Schütz Center for Medical Data Science of the Medical University of Vienna Faculty of Pharmacy, Universidade de Lisboa, Lisbon BEBAC, Vienna

Refresher: Fundamentals of PK

• AUC is the Integral of the Concentration-time Curve

• Example: One compartment, extravascular dose, single dose

* Dost FH. Der Blutspiegel: Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit. Leipzig: Thieme-Verlag; 1953. p. 244.

Terminology

- 1971 'Biologic Availability' \rightarrow Bioavailability (BA)
- 1975 Bioequivalence (BE) coined
- **1979 MeSH term 'Biological Availability' introduced** The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action
- BE was never a scientific concept in the Popperian sense but an *ad hoc* solution to pressing problems in the 1970s
 - Especially with formulations of Narrow Therapeutic Index Drugs (NTIDs) like phenytoin, digoxin, warfarin, theophylline, primidone
- 1 Vitti TG, Banes D, Byers TE. *Bioavailability of Digoxin.* N Engl J Med. 1971; 285(25): 1433–4. https://doi.org/10.1056/NEJM197112162852512
- 2 DeSante KA, DiSanto AR, Chodos DJ, Stoll RG. *Antibiotic Batch Certification and Bioequivalence*. JAMA. 1975; 232(13): 1349–51. <u>https://doi.org/10.1001/jama.1975.03250130033016</u>

Bioavailability

- Absolute: AUC_{EV} / AUC_{IV}
- Relative:

Innovators

Generics

- AUC_{Formulation} / AUC_{Solution} Influence of excipients on absorption
- AUC_{Test} / AUC_{Comparator} Investigation of Bioequivalence
 - Test to be marketed FormulationComparator Formulation used in Phase III
 - Drug-Drug Interactions
 - Line Extensions (e.g., lower / higher doses than already approved)
 - Major Variations (e.g., manufacturing process, site changes)
 - Food Effects
 - Test Generic Comparator Innovator

Department of Clinical Pharmacology, Medical University of Vienna | 5 November 2024

BE is the <u>desired result</u> of a Comparative BA study 'Bioequivalence Study' is sloppy terminology

Comparative BA: Terminology

- BA is based in classical PK solely on $AUC_{0-\infty}$
- In 1975 the U.S. FDA introduced two terms¹
 - The 'Extent of BA' or 'Total Exposure', measured by AUC
 - For a given formulation it depends only on D and f(*V* or *CL* and k_e are drug-specific and thus, not relevant)
 - The 'Rate of BA' or 'Peak Exposure', measured by C_{max}
 - C_{max} is a surrogate of the formulation-specific k_{a} but it is a composite² PK metric (depending also on AUC)

$$t_{\max} = \frac{\log_{e} \left(k_{a} / k_{e} \right)}{k_{a} - k_{e}}, \ C_{\max} = \frac{f \cdot D \cdot k_{a}}{V(k_{a} - k_{e})} \left(e^{-k_{e} \cdot t_{\max}} - e^{-k_{a} \cdot t_{\max}} \right)$$

Hence, C_{max} is not an unbiased estimator of k_a

- 1. Skelly JP. *Bioavailability and Bioequivalence*. J Clin Pharmacol. 1976; 16(10/2): 539–45. https://doi.org/10.1177/009127007601601013
- Tóthfalusi L, Endrényi L. Estimation of C_{max} and T_{max} in Populations After Single and Multiple Drug Administration. J Pharmacokin Pharmacodyn. 2003; 30(5): 363–85. <u>https://doi.org/10.1023/b:jopa.0000008159.97748.09</u>

Comparative BA: Regulatory Approaches

• PK Modeling is at the time being not acceptable

- PK models require exhaustive validation and documentation
- The same data set does not necessarily give the same results with different software
- PK metrics have to be calculated by Noncompartmental Analyses (NCA)*
 - Independent from software; paper, pencil, brain...
 - Planned methods have to be described in the protocol
 - Unlikely that one is able to observe the true C_{max}/t_{max} in every subject \rightarrow frequent sampling around t_{max} mandatory
 - At least three samples required to obtain a reliable estimate of the apparent elimination λ_z

* International Council for Harmonisation. *Bioequivalence for Immediate-Release Solid Oral Dosage Forms. M13A*. Geneva. 23 July 2024. <u>https://database.ich.org/sites/default/files/ICH_M13A_Step4_Final_Guideline_2024_0723.pdf</u>

Sampling time points

- Recommendations
 - Equally spaced in the absorption phase up to two times of the anticipated t_{max}
 - For IR products at $2 \times t_{max}$ absorption is practically complete*
 - Avoid "first point C_{max}" a pilot study is helpful
 - Never plan based on an *average* $t_{\frac{1}{2}}$ reported in literature
 - The t_{γ_2} of some subjects might be substantially slower or faster
 - − The extrapolated part ($AUC_{t-\infty}$) should cover ≥ 80% of $AUC_{0-\infty}$
 - Based on that, define the last sampling time point *t* and confirm that the bioanalytical method is sufficiently accurate and precise
 - Geometric progression of sampling time points from $2 \times t_{max}$ to t
 - Calculated sampling schedule adjusted according to clinical practicalities

* Scheerans C, Derendorf H, Kloft C. *Proposal for a Standardised Identification of the Mono-Exponential Terminal Phase for Orally Administered Drugs*. Biopharm Drug Dispos. 2008; 29(3): 145–57. <u>https://doi.org/10.1002/bdd.596</u>

Sampling time points: Example

- Analgesic PO; f = 0.9, D = 400 mg, V = 3 L,
 - $t_{1/2,a} = 30 \text{ min } (k_a = 1.3863 \text{ h}^{-1}), t_{1/2,e} = 4 \text{ h} (k_e = 0.1733 \text{ h}^{-1})$
 - Targets
 - Last sampling time at 16 h, 15 Sampling time points (7 after administration to $2 \times t_{max}$, 7 to t_{last})
 - Extrapolated AUC \leq 20% of AUC_{0- ∞}
 - Sampling schedule and required Lower Limit of Quantification?
 - Calculated
 - $C_{max} (t_{max}) 89.16 \ \mu g/mL (1.71 \ h = 1:42 \ h), C_{last} 8.57 \ \mu g/mL$
 - Linear pre-dose, 0:25, 0:51, 1:17, 1:42, 2:08, 2:34, 3:00, 3:25 h
 - Geometric 4:25, 5:43, 7:24, 9:43, 12:22, 16:00 h
 - Final schedule pre-dose, 0:15, 0:45, 1:15, 1:45, 2:15, 2:30, 3:00, 3:30, 4:30, 5:45, 7:30, 9:30, 12:30, 16:00 h

Sampling time points: Example (cont'd)

• Analgesic PO; with the practical sampling schedule

- $\lambda_z = 0.1733 \text{ h}^{-1} (t_{\frac{1}{2}} = 4.00 \text{ h}) \text{ based on } max(R^2_{adj})$ estimated from 9:30 to 16:00 h; n = 3 (guideline ≥ 3)
- $AUC_{t-\infty}/AUC_{0-\infty} = 7.17\%$ of $AUC_{0-\infty}$ (guideline $\leq 20\%$)
- LLOQ 4.5 μ g/mL (\approx 5% of C_{max}), 2.25 μ g/mL (\approx 2.5% of C_{max})

Remarks about AUC

- The 'linear trapezoidal method'^{1,2} should have been thrown into the scientific trash can with the introduction of scientific pocket calculators more than 50 years ago
 - Systematically overestimates AUC in the distribution / elimination phase → only of historical interest
- With few exceptions drugs follow first-order elimination, *i.e.*, an exponential decrease

$$C(t) = \frac{f \cdot D \cdot k_{a}}{V(k_{a} - k_{e})} \left(e^{-k_{e} \cdot t} e^{-k_{a} \cdot t} \right)$$

- Can be approximated by the 'linear-up / logarithmic-down trapezoidal method'²
- 1 Skelly JP. A History of Biopharmaceutics in the Food and Drug Administration 1968–1993. AAPS J. 2010; 12(1): 44–50. https://doi.org/10.1208/s12248-009-9154-8
- 2 Yeh KC, Kwan KC. A Comparison of Numerical Integrating Algorithms by Trapezoidal, Lagrange, and Spline Approximation. J Pharmacokin Biopharm. 1978; 6(1): 79–98. <u>https://doi.org/10.1007/BF01066064</u>

Remarks about AUC (cont'd)

- Linear-up / logarithmic-down trapezoidal method
 - Sections with *increasing or equal* concentrations $(C_{i+1} \ge C_i)$ are calculated by the linear trapezoidal method

$$AUC_{t_i \rightarrow t_{i+1}} \simeq \frac{C_{i+1} + C_i}{2} (t_{i+1} - t_i)$$

 Sections with *decreasing* concentrations (C_{i+1} < C_i) are calculated by the logarithmic-linear trapezoidal method

$$AUC_{t_i \to t_{i+1}} \simeq \frac{C_{i+1} - C_i}{\log_e \frac{C_{i+1}}{C_i}} (t_{i+1} - t_i)$$

- Implemented in software since 1993 (!!)
- Suitable for IV (bolus, infusion) and any EV administration

Design Considerations

- Fundamental Assumption of BE
 - The similarity in concentrations observed in the circulation (PK) is reflected in the site of action (PD = effects), allowing for the extrapolation of results to the patient population(s)
- Always in the condition which is most sensitive to detect potential differences in formulations
 - Commonly single dose, highest strength
 - Sometimes in steady state (e.g., the auto-inducer carbamazepine)
- If ever possible, studies in healthy volunteers in a crossover design order to decrease variability
- If not possible (extremely long half-life or AEs in healthy volunteers), studies in a parallel design

Design Considerations (cont'd)

- In crossover designs treatment periods have to be separated by a sufficiently long washout-period ($\geq 5 t_{\frac{1}{2}}$)
 - In later period(s) subjects have to be in the same physiological state than in the drug-naïve first
 - In multiple dose studies the washout of the first treatment can overlap with the saturation phase of the next treatment
- ICH E9 (1998)

The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed

• ICH M13A (2024)

The number of subjects [...] should be based on an appropriate sample size determination to achieve a pre-specified power and [...] type 1 error

Design Considerations (cont'd)

- The more complex a design is, the more information can be extracted, which leads to a lower sample size
- Hierarchy of designs
 Full replicate (TRTR | RTRT or TRT | RTR) ♣
 Partial replicate (TRR | RTR | RRT) ♣
 2×2×2 crossover (TR | RT) ♣
 Parallel (T | R)
- Variances which can be estimated

Parallel 2×2×2 crossove Partial replicate Full replicate

- total (pooled of between + within subjects)
- $2 \times 2 \times 2$ crossover + between, within subjects \pounds
- Partial replicate + within subjects (of R only) *S*
 - + within subjects (of R and T) 🕩

Design Considerations (cont'd)

The sample size depends on

the clinically not relevant deviation Δ

 $\Delta = 20\%$ is arbitrary (as is any other) However, we have decades of empiric evidence that it is suitable

- For most drugs $\Delta = 20\%$, leading to BE limits of $100\{1 - \Delta, 1 / (1 - \Delta)\} = \{80\%, 125\%\}$
- For Highly Variable Drugs / Drug Products $\Delta > 20\%$ and $\leq 50\%$, leading in most juris-

dictions to expanded BE limits of up to {69.84%, 143.19%}

- For NTIDs $\Delta = 10\%$, leading in most jurisdictions to narrower BE limits of $100\{1 - \Delta, 1 / (1 - \Delta)\} = \{90.00\%, 111.11\%\}$
- the desired power π (where the producer's risk $\beta = 1 \pi$)
- the acceptable consumer risk α (fixed by the authority)
- the assumed deviation of the Test formulation to the Comparator
- the assumed variability (generally expressed as CV)
- the study design (the more complex, the less subjects)

PK metrics follow a lognormal distribution BE limits are symmetrical in log-scale but asymmetrical after back-transformation, e.g., ±0.2231 $e^{-0.2231} = 0.80, e^{+0.2231} = 1.25$

Hypotheses in BE

- The Null Hypothesis H_0 we hope to reject is Bio<u>in</u>equivalence ($\mu_T \neq \mu_R$)
- The Alternative Hypothesis H_a we hope to *accept* is Bioequivalence ($\mu_T \cong \mu_R$)
- All formal decisions are subjected to two Types of Error
 - α = Probability of Type I Error (a.k.a. Risk Type I)
 - β = Probability of Type II Error (a.k.a. Risk Type II)

Decision	<i>H</i> ₀ is <i>true</i>	H ₀ is false		
H ₀ rejected	Patient's risk (α)	Correct (BE)		
H ₀ not rejected	Correct (not BE)	Producer's risk (β)		

Type I Error

- α = Patient's risk to be treated with an inequivalent formulation (H_0 falsely rejected)
 - BA of the Test compared to Reference in a *particular* patient is considered to be risky *either below* 80% *or above* 125%
 - If we keep the risk of *particular* patients at α 0.05 (5%), the risk of the entire *population* of patients (where BA < 80% *and* > 125%) is 2α (10%) expressed as a confidence interval: $100(1 2\alpha) = 90\%$
 - However, since in a patient BA cannot be < 80% and > 125% at the same time, the patient's risk from a 90% CI is still only 5%

Type II Error

- β = Producer's risk that an equivalent formulation is not approved (*H*₁ falsely not accepted)
 - Fixed in study planning to $10 \approx \le 20\%$, where power $\pi = 1 \beta = \ge 80 \approx 90\%$
 - If all assumptions in the sample size estimation turn out to be correct and power was fixed at 80%,

one out of five studies will fail by pure chance

 Post hoc (a posteriori, retrospective) power * is irrelevant; the outcome of a comparative BA study is dichotomous – either it passed BE or it failed

* WHO. Frequent deficiencies in BE study protocols. Geneva. November 2020. https://extranet.who.int/prequal/sites/default/files/document_files/Frequent-Deficiencies_BE-Protocols_Nov2020.pdf

Sample Size Estimation: Basics*

- Never ever assume perfectly equal formulations $(\mu_T/\mu_R = 100\%)$
 - Base the T/R-ratio on the measured content but
 - the analytical method is not perfectly accurate/precise and
 - validated only for the Test formulation
- Take reported variability (esp. from the literature) with a grain of salt
 - Better the CV of an own pilot study
 - Best an own failed study...
 - Always assume a larger variability (be conservative)
- Targeting power > 90% may raise concerns from the IEC

* Schütz H. Power Calculation and Sample Size Estimation. Vienna. 2024. https://bebac.at/articles/index.phtml#power_sample_size

Sample Size Estimation: Examples

All targeted for 80% power

- Parallel design, limits 80 125%
 - T/R-ratio 0.90, CV_{total} 40%: 266
- 2×2×2 crossover design, limits 80 125%
 - T/R-ratio 0.90, CV_{within} 40%: 134
 - T/R-ratio 0.95, CV_{within} 30%: 40
- 2×2×2 crossover design, limits 90.00 111.11% (NTID)
 - T/R-ratio 0.95, CV_{within} 15%: 96
 - T/R-ratio 0.975, CV_{within} 15%: 46
- 2×2×4 full replicate design, limits 80 125%
 - T/R-ratio 0.90, CV_{within} 40%: 68
 - T/R-ratio 0.95, *CV*_{within} 30%: 20
- 2×2×4 full replicate design, limits 69.84 143.19% (HVD)
 - T/R-ratio 0.90, CV_{wR} 50%: 28

Labes D, Schütz H, Lang B. *PowerTOST: Power and Sample Size Based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies.* 2024; Version 1.5-6. <u>https://cran.r-project.org/package=PowerTOST</u>

Evaluation: $100(1 - 2\alpha)$ CI within BE limits

Parallel design

- Equal variances of groups *must not* be assumed
 - The conventional *t*-test or an ANOVA are wrong (liberal)
 - The Welch-Satterthwaite test adjusts for unequal variances and/or unequal group sizes (due to dropouts)
- Crossover (including replicate) designs
 - All effects fixed (ANOVA), except
 - for the FDA, Health Canada, and China's CDE requiring a mixed effects model (subjects as a random effect, all others fixed)
- Reference-scaling for HVD(P)s
 - If $CV_{wR} > 30\%$ (EMA, ...) or $s_{wR} > 0.294$ (FDA, CDE), the BE limits can be expanded if clinically not problematic
 - Additionally, the point estimate (PE) has to lie within 80 125%

Evaluation: Example (2×2×2 crossover)

• Spreadsheets are not acceptable¹ – difficult to validate²

Subject	Period	Sequence	Treatment	PK	log _e (PK)	$\mathbf{PK}_{\mathrm{T}}/\mathbf{PK}_{\mathrm{R}}$
1	1	TR	Т	185	5.220	0.797
1	2	TR	R	232	5.447	
2	1	RT	R	1,068	6.974	0.801
2	2	RT	т	856	6.752	
3	1	RT	R	831	6.723	1.194
3	2	RT	т	992	6.900	
4	1	TR	Т	1,213	7.101	1.183
4	2	TR	R	1,025	6.932	
5	1	RT	R	1,689	7.432	0.854
5	2	RT	т	1,442	7.274	
6	1	TR	Т	478	6.170	1.189
6	2	TR	R	402	5.996	

- 1. EMA (CHMP). Questions & Answers: positions on specific questions addressed to the Pharmacokinetics Working Party (PKWP). London. 19 November 2015.
- Schütz H, Labes D, Fuglsang A. Reference Datasets for 2-Treatment, 2-Sequence, 2-Period Bioequivalence Studies. AAPS J. 2016; 16(6): 1292–7. <u>https://doi.org/10.1208/s12248-014-9661-0</u>

Evaluation: Example (2×2×2 crossover)

 Simplified output based on log_e-transformed data (Phoenix WinNonlin, Certara 2023)

Hypothesis	DF SS	MS	F	р		
Sequence	1 2.24242	2.24242	91.1313	0.0007		
Sequence*Subject	4 3.20154	0.800386	32.5275	0.0026		
Treatment	1 0.0006322	6 0.00063226	0.0256948	0.8804		
Period	1 0.0083987	0.0083987	0.341322	0.5904		
Error	4 0.0984257	0.0246064				
Sequence as Error Term: 125% -						
Sequence*Subject	4 3.20154	0.800386	0.35693	0.8305	120%	
Test LSMean Reference LSMean	110%					
					100%	
Difference = -0.	0145, SE (Dif	f(f) = 0.0906,	df = 4			
Ratio(%R) = 98. CI 90% = (81.	5588 2558, 119.546	53)			90% -	

80%

Evaluation: Example (2×2×2 crossover)

• 'By hand'...

 $df = n_{\text{TR}} + n_{\text{RT}} - 2, \ \alpha = 0.05$ $\log_e 90\% \text{CI} = (\log_e LSM_T - \log_e LSM_R) \mp t_{df,\alpha} \sqrt{\frac{MSE}{2} \left(\frac{1}{n_{\text{TR}}} + \frac{1}{n_{\text{RT}}}\right)}$

 $\log_{e} 90\% \text{CI} = (6.569443 - 6.583950) \mp 2.131847 \sqrt{-0.569443}$

$$\frac{0.0246064}{2}\left(\frac{1}{3}+\frac{1}{3}\right)$$

 $PE = 100 \times exp(6.569443 - 6.583950) \approx 98.56\%$ $log_e \ 90\% \ Cl = (-0.207589, +0.178555)$ $90\% \ Cl = 100 \times exp(-0.207589, +0.178555) \approx (81.25\%, 119.55\%)$

An all too common Misconception

Skeptical physician

- » Given the BE limits of 80 125%, there is currently a market presence of formulations with BA differences of up to 45%; I don't trust in generics and will not prescribe any ... «
- The 90% CI has to lie within 80 125%, not only the PE Average difference of generic to innovator products reported in a review* of 2,070 studies by the FDA:
 - AUC $(3.56 \pm 2.58)\%$
 - C_{max} (4.35 ± 3.54)%
- Charlie DiLiberti (GBHI Conference, Rockville 2016) » Ask ten physicians what BE is and eleven will get it wrong. «

* Davit BM, Nwakama PE, Buehler GJ, Conner DP, Haidar SH, Patel DT, Yang Y, Yu LX, Woodcock J. Comparing Generic and Innovator Drugs: A Review of 12 Years of Bioequivalence Data from the United States Food and Drug Administration. Ann Pharmacother. 2009; 43(10): 1583–97. <u>https://doi.org/10.1345/aph.1M141</u>

Comparative Bioavailability Studies Fundamentals and Common Pitfalls

Helmut Schütz Center for Medical Data Science

1090 Vienna, Austria

helmut.schuetz@muv.ac.at

Faculty of Pharmacy, Universidade de Lisboa

1649-004 Lisbon, Portugal helmut@edu.ulisboa.pt

BEBAC

1070 Vienna, Austria helmut.schuetz@bebac.at Further information and examples https://bebac.at/articles/

Backup: Typical results of Comparative BA

Studies which failed BE

- If the CI lies entirely outside the BE limits → reformulate
- If wide CI and the PE is well within the BE limits, overly optimistic (too small) sample size and/or CV larger than assumed → repeat the study in a larger sample size size
- If narrow CI and the PE lies close to one of the limits, repeating the study is risky (consider reformulation)
- Studies which passed BE
 - If the CI lies exactly at the limits, you were extremely lucky...
 - If the CI is very narrow, consider to perform the *next* study in a smaller sample size (*CV* smaller than assumed)

Backup: Missing sample and linear trapezoidal method

 Simulated profiles (true T/R 0.95), 12 h sample after R is missing

Backup: Missing sample and linear-up / logarithmic-down trapezoidal method

 Simulated profiles (true T/R 0.95), 12 h sample after R is missing

Backup: Why log_e-transform the data? I

- If we want to compare bioavailabilities of two treatments (f_{T}, f_{R}) we arrive based on the fundamental equation of PK $\frac{f_{T}}{f_{R}} = \frac{AUC_{T} \cdot D_{T}}{CL} / \frac{AUC_{R} \cdot D_{R}}{CL}$ only with $D_{T} = D_{R}$ and CL = const at $\frac{f_{T}}{f_{R}} = \frac{AUC_{T}}{AUC_{R}}$
 - This is a *ratio* and thus, we have to use a *multiplicative* model
 - However, in the statistical models we need *additive* effects
 - Since f_T / f_R is the point estimate we are interested in, we can rewrite/transform the equation and use *e.g.*, an ANOVA $\log_e PE = \log_e f_T - \log_e f_R = \log_e AUC_T - \log_e AUC_R$ and finally PE = exp(log_ PE)

Backup: Why log_e-transform the data? II

• PK metrics are *not* normally distributed but follow a lognormal distribution

Strictly speaking, not the PK metrics per se have to be normally distributed after log_-transformation but the model residuals (estimates of ε). However, when exploring large data sets (without and after transformation), we see that the latter are closer to normally distributed.

Drug X (n = 608) Arithmetic mean = 47.2 h×ng/mL, geometric mean = 44.0 h×ng/mL

Backup: Sampling Schedule Problems

 Lansoprazole (Proton Pump Inhibitor) Attempt to deal with high variability of C_{max}/t_{max} and lag-times: Sampling every 30 minutes up to 14 hours (140 subjects, 7,785 samples)

Backup: Why can the Type I Error in Scaled Average Bioequivalence be inflated?

- Implemented SABE approaches are frameworks
 - Limits are random variables dependent on the reference's variance
 - Drugs will be misclassified if the <u>observed</u> $CV_{wR} \neq \underline{true} \ CV_{wR}$

Backup: Empiric Type I Error in SABE

ABEL (EMA and others)

*TIE*_{emp} at *CV*_{wR} 30%; *n* 24: 0.0804, *n* 120: 0.0838

RSABE (FDA 'implied limits')

*TIE*_{emp} at *CV*_{wR} 30%; *n* 24: 0.1335, *n* 120: 0.2418

2-sequence 4-period full replicate design

Backup: Operating Characteristics (simulation-based Type 1 Two-Stage Design)

GMR 0.95, power 80%, α_{adi} 0.0294 (Potvin *et al.* 'Method B')

Department of Clinical Pharmacology, Medical University of Vienna | 5 November 2024

Backup: Operating Characteristics (Exact Method for a Two-Stage Design)

Fixed GMR 0.95 (*CV* 0.1–0.8, *n*₁ 12–72) No futility rules Type I Error 0.02598 – 0.04995

Adaptive GMR (*CV* 0.1–0.8, *n*₁ 12–72) Futility on the CI (outside 0.95 – 0.95⁻¹) Type I Error 0.01678 – 0.04523

Adaptive GMR (CV 0.1–0.8, n_1 12–72) Futility on the CI (outside 0.95 – 0.95⁻¹) Futility on N_{max} (> 4× n_1) Type I Error 0.00006 – 0.03838

