- Selection of CROs
- Selection of a Reference Product
- Metrics (AUC, C_{max}/t_{max}, Shape of Profile)
- Acceptance Ranges (0.80 1.25 and beyond)
- Sample Size Planning (Literature References, Pilot Studies)
- Steps in bioanalytical Validation (Validation Plan, Pre-Study Validation, In-Study Validation)
- Study Designs
- Protocol Issues
- Evaluation of Studies
- Advanced Topics
- Avoiding Pitfalls

- Advanced Topics
 - Highly Variable Drugs (Add-On Designs, Reference-Scaled Average Bioequivalence, Replicate Designs)
 - Assessment of Metabolites
 - Chiral Drugs
 - Dose Proportionality

- Highly Variable Drugs (HVDs)
 - Defined at the BioInternational '89 (Toronto) with intra-subject CV of ≥30 %, elaborated at the BioInternational '92 (Bad Homburg)
 - Various methods were discussed
 - → Potential reduction of variability in steady-state
 - → Replicate designs
 - → Add-on designs
 - → Stable isotope techniques

- Highly Variable Drugs (HVDs)
 - K. Midha (BioInternational '94 Munich) distinguished between Highly Variable Drugs (HVDs), and Highly Variable Drug Products (HVDPs)
 - HVD
 - → Drugs with low and variable absorption,
 - e.g., biphosphonates (etidronate, aledronate, clodronate,...)
 - → Drugs with variable clearance,
 - e.g., verapamil, spironolactone,...
 - HVDP
 - → Drug Products where the the galenic principle may lead to an increased variability as compared to an oral solution, e.g., diclofenac

Highly Variable Drugs (HVDs)

• HVD

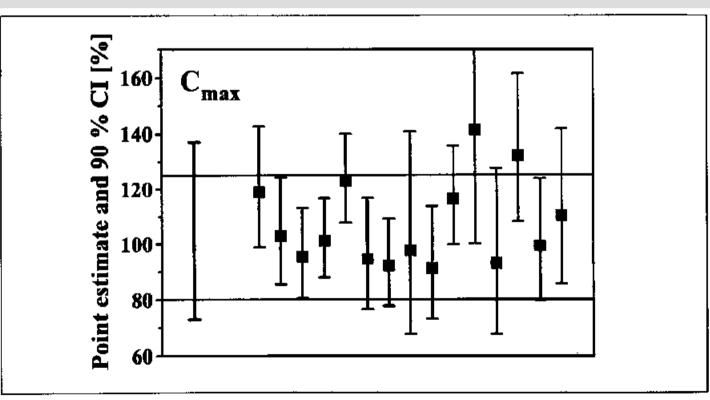
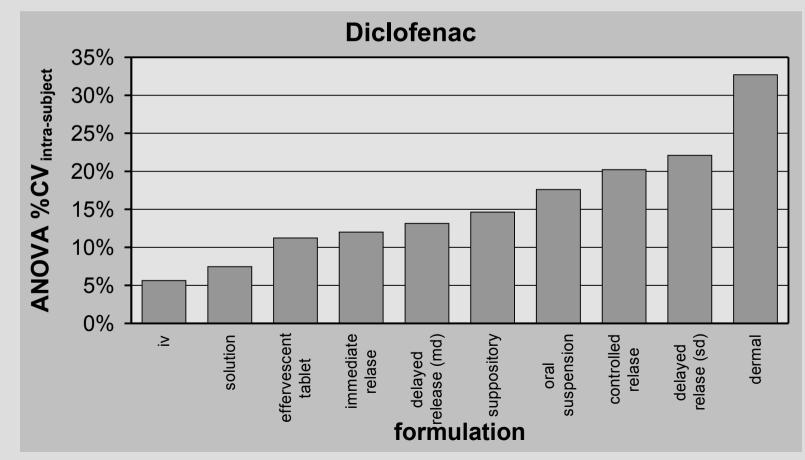



Fig. 4: Confidence intervals for C_{mix} -values from 15 T vs. R studies after single dose administration of different verapamil 80 mg IR formulations: Assessment of bioequivalence considering 80–125 % acceptance limits [for reference: confidence interval of replicate R vs. R study]

Highly Variable Drugs (HVDs)

• HVDP

- Highly Variable Drugs (HVDs)
 - Turkey
 - Extended Acceptance Range (0.75 1.33)
 - + Sample Sizes for Δ ±5 %, power 80 %
 - → CV 30 %: 22
 → CV 40 %: 38
 → CV 50 %: 58
 - EMEA
 - Extended Acceptance Range (0.75 1.33) ?
 - if based on clinicial grounds
 - → see lecture 2-1-1 (slides 29-30)
 - → but: see lecture 2-1-1 (slides 32-33), lecture 2-2-1 (slides 28-31)

- Highly Variable Drugs (HVDs)
 - EMEA
 - Multiple dose studies to decrease variability ?
 - ...may be considered,
 - → see lecture 2-1-1 (slide 33)
 - → but: see lecture 2-1-3 (slide 3/5)
 - are successful in most cases,
 - but in rare cases may also fail:
 - → van Hoogdalem *et al.*;

Multiple dose bioequivalence study with josamycin propionate, a drug with highly variable kinetics, in healthy volunteers.

Int. J. Clin. Pharmacol. Ther. 34(5), 202-207 (1996)

- Highly Variable Drugs (Add-On Designs)
 - EMEA

Group Sequential Designs

- Although discussed at BioInternationals '89 to '96, no concensus was reached.
- Group sequential designs are standard in clincial research.
- Personal Experience:
 - A proposed method^{*}) was not accepted in the planning phase (3 cases, German BfArM).
- ^{*)} L.A. Gould;

Group Sequential Extension of a Standard Bioequivalence Testing Procedure.

J. Pharmacokin. Biopharm. 32(1), 57-86 (1995)

- Highly Variable Drugs (Add-On Designs)
 - EMEA
 - **Group Sequential Designs**
 - Personal Experience:
 - → Evaluation of first part by an independent statistician (CV only!), performance of a second part, evaluation of pooled data without Bonferroni-correction 90 % CI (2 cases Germany, 1 case France).
 - → May be a reasonable approach, since Add-On Designs are in practice in Canada (since 1991), and Japan (since at least 1997).

- Highly Variable Drugs (Reference-Scaled Average Bioequivalence)
 - EMEA

Reference-Scaled ABE

- Proposed by L. Endrenyi and L. Tothfalushi; not only in replicate designs, but also in standard 2×2 Cross-over (scaling to CV_{intra})
 - → Mentioned only in South African Guideline.
 - → Sample Size?
 - → Acceptance?

Highly Variable Drugs

- Assessment of $AUC \cdot k_{el}$
 - For drugs with highly variable Clearance, assessment of AUC·k_{el} instead of AUC was proposed.
 - Must my decided on a case-to-case basis (does not work for all drugs!)
 - → Acceptance?

H.Y. Abdalah;

An Area Correction Method To Reduce Intrasubject Variability In Bioequivalence Studies.

J. Pharm. Pharmaceut. Sci. 1(2), 60-65 (1998)

Highly Variable Drugs (Replicate Designs)

- EMEA
 - ...under certain circumstances and provided the study design and the statistical analyses are scientifically sound, alternative well-established designs could be considered such as [...] replicate designs for substances with highly variable disposition.
 - Scaling the acceptance range according to the variability of the reference.
 - but: contact with the respective Regulatory Authority in a 'Scientific Advisory Meeting' is highly recommended!
 - → Acceptance in <u>all</u> EU countries doubtful...

Advanced Topics

- Highly Variable Drugs (Add-On Designs, Reference-Scaled Average Bioequivalence, Replicate Designs)
- Assessment of Metabolites
- Chiral Drugs
- Dose Proportionality

Assessment of Metabolites

- Turkey
 - BA Studies
 - → Both the parent drug and its major active metabolite.
 - BE Studies
 - → Only parent drug is sufficient.
 - Exemptions
 - If parent drug is not measurable by the analytical method used, measurement of a metabolite (active/inactive) is recommended.

Y. Çapan;

BE Practice and Issues in Turkey. BioInternational 2005, London (26 October 2005)

Assessment of Metabolites

- Turkey
 - Exemptions
 - If metabolite contributes meaningfully to safety and/or efficacy, both parent drug and metabolite should be measured.
 - Active metabolite should be measured
 - in case of a prodrug,
 - if the parent drug is transformed extremely to the active metabolite,
 - if pharmacokinetics of the parent drug is non-linear.
 - Y. Çapan;

BE Practice and Issues in Turkey. BioInternational 2005, London (26 October 2005)

Assessment of Metabolites

- EMEA
 - BA / BE
 - → Parent drug.
 - Exemptions
 - Active or inactive metabolite should be measured if the concentration of the active substance is too low to be accurately measured in the biological matrix.
 - major difficulty in analytical method,
 - if product is unstable in the biological matrix,
 - if half life of the parent compound too short.

Assessment of Metabolites

- EMEA
 - Exemptions
 - BE determinations based on metabolites should be justified in each case bearing in mind that the aim of a BE study is intended to compare the *in vivo* performance of test and reference products.

In particular if metabolites significantly contribute to the net activity of an active substance and the pharmacokinetic system is non-linear, it is necessary to measure both parent drug and active metabolite plasma concentrations and evaluate them separately.

Advanced Topics

- Highly Variable Drugs (Add-On Designs, Reference-Scaled Average Bioequivalence, Replicate Designs)
- Assessment of Metabolites
- Chiral Drugs
- Dose Proportionality

- Chiral Drugs
 - FDA
 - **BA Studies**: measurement of individual enantiomers may be important.
 - BE Studies: measurement of the racemate using an achiral assay is recommended. Measurement of individual enantiomers in BE studies is recommended only when <u>all</u> of the following conditions are met:
 - → enantiomers exhibit different PD characteristics,
 - → enantiomers exhibit different PK characteristics,
 - Primary efficacy and safety activity resides with the minor enantiomer,
 - nonlinear absorption is present for at least one of the enantiomers.

- Chiral Drugs
 - EMEA
 - BA Studies: individual enantiomers (?)
 - **BE Studies**: enantiomeric bioanalytical methods *unless*:
 - → both products contain the same stable single enantiomer, or
 - South products contain the racemate and both enantiomers show linear pharmacokinetics.
 - → Remark:

the last point may in the NfG be a nasty trap, since *pharma*cokinetics of single enantiomers are simply not known for the majority of drugs.

- Chiral Drugs
 - Turkey?