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Scaled Average Bioequivalence (SABE) for HVD(P)s

 HVD(P)s show large within-subject variability
 Safe and efficacious despite their high variability
* Large sample sizes required for Average BE based on the
clinical relevant difference A = 20% (80 — 125%)

* A >20% discussed at Biolnternational conferences (1989 — 2005) and
meetings of the FDA Advisory Committee for Pharmaceutical Science

(1997 —2006) if CV, =2 30%
* Fixed limits based on A =25% (75— 133%) or A = 30% (70 — 143%)
* Scaled limits based on the observed CV, . in a (at least reference-)
replicated design study
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Implemented methods

» Reference-Scaled Average Bioequivalence (RSABE)
* US FDA and China CDE
* Ifs,r20.294 (CV,; 2 30.05%); otherwise, by ABE

* Average Bioequivalence with Expanding Limits (ABEL)
« Recommended in all [sic] other jurisdictions accepting SABE
* If CV, > 30%; otherwise, by ABE

* Upper cap of expansion
* 50% —> max.69.84-143.19%
 =57.4% - max. 66.7 —150.0% (Health Canada)

* In both: Point estimate constraint (80.00 — 125.00%)

""""""
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The Type | Error can be inflated (increased patient’s risk)

* Implemented methods of
SABE are frameworks 02 Ty e
* BE limits are random v \ e IR poe B
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Empiric Type | Error in the implemented methods

RSABE 2-sequence ABEL
4-period full

replicate design
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Empiric Type | Error (ABEL, modifications)

no upper cap 2-sequence a-adjusted
4-period full

replicate design
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Conclusions (RSABE)

* The implemented method is beyond repair
* |ts maximum Type | Error is much larger than by ABEL

* Assessing the TIE via the ‘desired consumer risk model’
(Davit et al. 2012) is a mere magician’s trick; | do not agree that it
»maintains an acceptable Type | Error rate«
(6.63% with 24 subjects in a full replicate design)

* The decision of equivalence (i.e., whether the upper bound of the
linearized criterion is non-negative) is incomprehensible for physicians

* If s, <0.294 in a partial replicate design, the model is over-specified
and may not converge
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Conclusions (ABEL)

* The upper cap of expansion lacks a scientific rationale

* 50% introduced in most jurisdictions due to reservations of
one European member state

* HC’s =57.4% likely to give a ‘nice’ max. expansion of 67.7 — 150.0%
* No issues with the Type | Error due to the inherent conservatism of
the TOST procedure and the PE-constraint;
lower sample sizes for large CV,,q
* a-adjusted methods
e Control the Type | Error
* Compromise power - large sample sizes required if true CV,; > 50%
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Suggestions for ICH M13C

 ABEL with modifications should be considered
* Should be acceptable for all PK metrics
* The upper cap should be removed
* Biased-corrected Howe-LO and iteratively adjusted a are promising —
control the Type | Error with less loss in power than other methods
* Heretical utopia (utopian heresy?)

* Full replicate studies mandatory for the originator; alternatively
agencies could collect and exchange CV, of studies - PSGs

* Fixed limits (A > 20%): replicate designs no more needed and
the Type | Error is always controlled
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Group-Sequential (GS), Adaptive Two-Stage (TS) Designs

* In the conventional approach of pilot / pivotal studies

* Only part of the information (T/R ratio, CV) of the former is used to
design the latter

* The individual data of the pilot — or a failed pivotal — are not used
(they are only supportive information in the application)

* Since the T/R-ratio and the CV are estimates or assumptions, even a
properly powered pivotal study of a bioequivalent product may fail in
a fixed-sample design (probability = 1 — power)

e GSDs and TSDs allow decisions in an ‘interim analysis’
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Group-Sequential Designs

* The total sample size n is estimated as in a fixed-sample design

e Analyses (interim and final) are performed with adjusted alphas
(< 0.05), which must not be the same

* An interim analysis is performed at n/2

* |f the study passes BE already - stop for success,
otherwise 2" group is administered
* (If the result looks promising — 2"group is administered,
otherwise stop for futility)

* Even if the study fails in the interim only by a slight margin,
still n/2 have to be administered
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Adaptive Two-Stage Designs

* If a pivotal study of a bioequivalent product fails in a fixed-sample
design (probability = 1 — power) and is repeated in a larger sample
size, the data of the first is not used

* In the interim analysis
* Whether or not an adjusted a has to be used depends on the method

* |f the study passes BE already - stop for success,
otherwise the total sample size is re-
estimated and the 2"9 group dosed

e (If the result looks promising — 2"9 group is dosed,
otherwise stop for futility)
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Operating Characteristics (simulation-based TSD)

Type | Error
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Maximum TIE at CV 24% and n, 12: 0.04895
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“Type 1’ TSD
(Potvin et al. B)

Conditions:

o,y 0.0294

GMR 0.95

power 80%

cv 10 — 80%
(step 2%)

n, 12-72
(step 2)

1 mio simulations in
all combinations;
significance limit for
the Type | Error
(TIE) 0.05036

-
o

Power

100

Minimum final power at CV 80% and n, 12: 72.24%
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Remarks

* GSDs
* If interim is not at n/2 and/or final not at n = further adjustment of o

* TSDs
e Exact methods only for 2x2x2 crossover design

 Futility rules
* Reduce the Type | Error
* Negative impact on power - simulations recommended

* Small first stage not recommended - large sample size penalty
* 0.0294 is not a ‘natural constant’ (different conditions = different a,)
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Suggestions for ICH M13C

* Inverse Normal Method for 2x2x2 crossover should be recommended
(based on a mathematical proof)

e Maximum combination test or
e Standard combination test

* Simulation-based methods should be acceptable if maximum
empiric Type | Error for the entire grid of CV / n;-combinations
with 1 mio simulations £ 0.05036

* Published methods
* Alternatively simulations of the applicant with exhaustive
documentation
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Statistical challenges and opportunities in ICH M13C

Thank You!
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