

Statistical challenges and opportunities in ICH M13C

Helmut Schütz

Center for Medical Data Science of the Medical University of Vienna BEBAC, Vienna

ZRD

BIOEQUIVALENCE CONFERENCE

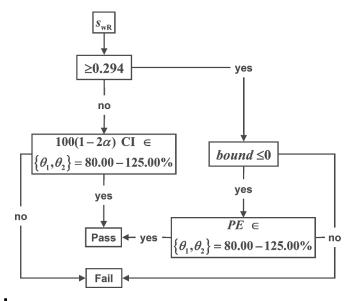
HILTON AMSTERDAM AIRPORT SCHIPHOL

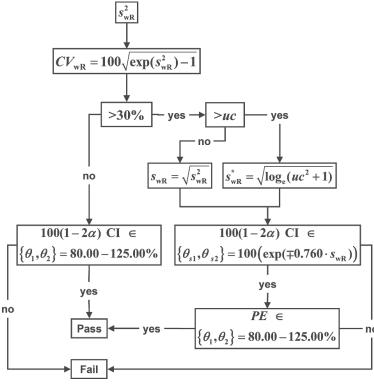
26 FEBRUARY 2025

Scaled Average Bioequivalence (SABE) for HVD(P)s

- HVD(P)s show large within-subject variability
 - Safe and efficacious despite their high variability
 - Large sample sizes required for Average BE based on the clinical relevant difference $\Delta = 20\%$ (80 125%)
- Δ > 20% discussed at BioInternational conferences (1989 2005) and meetings of the FDA Advisory Committee for Pharmaceutical Science (1997 2006) if $CV_{wR} \ge 30\%$
 - *Fixed* limits based on $\Delta = 25\%$ (75 133%) or $\Delta = 30\%$ (70 143%)
 - Scaled limits based on the observed $CV_{\rm wR}$ in a (at least reference-) replicated design study

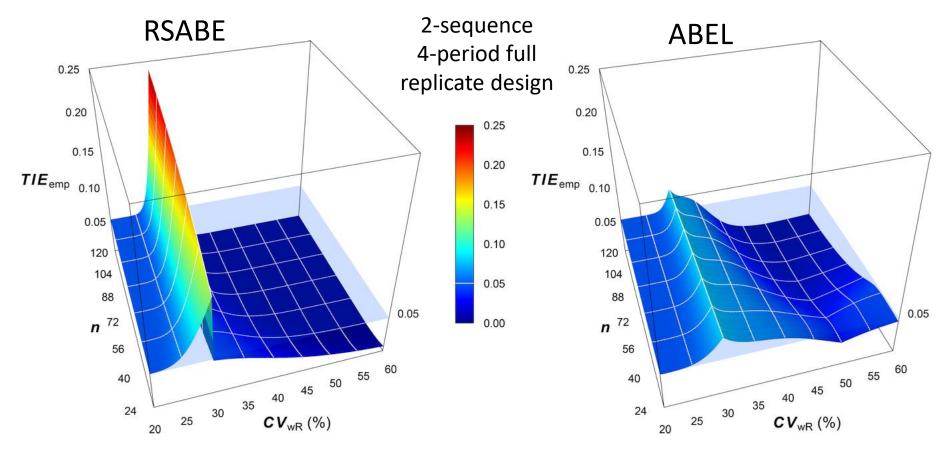
Implemented methods

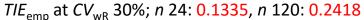

- Reference-Scaled Average Bioequivalence (RSABE)
 - US FDA and China CDE
 - If $s_{wR} \ge 0.294$ ($CV_{wR} \ge 30.05\%$); otherwise, by ABE
- Average Bioequivalence with Expanding Limits (ABEL)
 - Recommended in all [sic] other jurisdictions accepting SABE
 - If $CV_{wR} > 30\%$; otherwise, by ABE
 - Upper cap of expansion
 - 50% \rightarrow max. 69.84 143.19%
 - $\approx 57.4\% \rightarrow \text{max. } 66.7 150.0\%$ (Health Canada)
- In both: Point estimate constraint (80.00 125.00%)

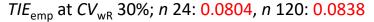


The Type I Error can be inflated (increased patient's risk)

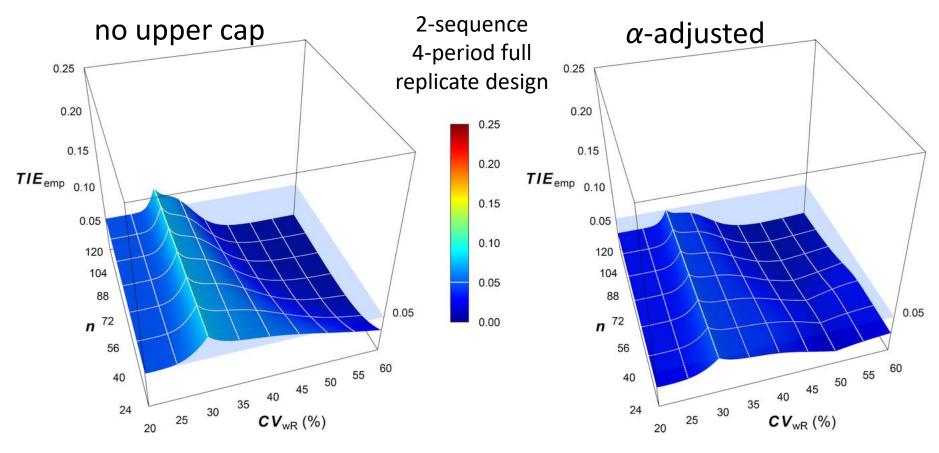
- Implemented methods of SABE are frameworks
 - BE limits are random variables dependent on the reference's variance
 - Δ unknown beforehand
 - Drugs will be misclassified if observed $s^2_{WR} \neq \underline{\text{true }} \sigma^2_{WR}$

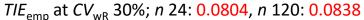

RSABE

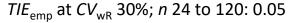




Empiric Type I Error in the implemented methods







Empiric Type I Error (ABEL, modifications)

Conclusions (RSABE)

- The implemented method is beyond repair
 - Its maximum Type I Error is much larger than by ABEL
 - Assessing the TIE via the 'desired consumer risk model'
 (Davit et al. 2012) is a mere magician's trick; I do not agree that it
 »maintains an <u>acceptable</u> Type I Error rate«
 (6.63% with 24 subjects in a full replicate design)
 - The decision of equivalence (*i.e.*, whether the upper bound of the linearized criterion is non-negative) is incomprehensible for physicians
 - If $s_{\rm wR}$ < 0.294 in a partial replicate design, the model is over-specified and may not converge

Conclusions (ABEL)

- The upper cap of expansion lacks a scientific rationale
 - 50% introduced in most jurisdictions due to reservations of one European member state
 - HC's ≈57.4% likely to give a 'nice' max. expansion of 67.7 150.0%
 - No issues with the Type I Error due to the inherent conservatism of the TOST procedure and the PE-constraint; lower sample sizes for large CV_{wR}
- α -adjusted methods
 - Control the Type I Error
 - Compromise power \rightarrow large sample sizes required if true $CV_{wR} > 50\%$

Suggestions for ICH M13C

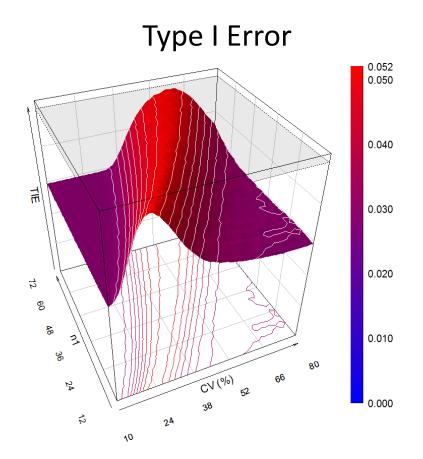
- ABEL with modifications should be considered
 - Should be acceptable for all PK metrics
 - The upper cap should be removed
 - Biased-corrected Howe-LO and iteratively adjusted α are promising control the Type I Error with less loss in power than other methods
- Heretical utopia (utopian heresy?)
 - Full replicate studies mandatory for the originator; alternatively agencies could collect and exchange $CV_{\rm wR}$ of studies \rightarrow PSGs
 - Fixed limits (Δ > 20%): replicate designs no more needed and the Type I Error is always controlled

Group-Sequential (GS), Adaptive Two-Stage (TS) Designs

- In the conventional approach of pilot / pivotal studies
 - Only part of the information (T/R ratio, CV) of the former is used to design the latter
 - The individual data of the pilot or a failed pivotal are not used (they are only supportive information in the application)
- Since the T/R-ratio and the CV are estimates or assumptions, even a properly powered pivotal study of a bioequivalent product may fail in a fixed-sample design (probability = 1 power)
- GSDs and TSDs allow decisions in an 'interim analysis'

Group-Sequential Designs

- The total sample size *n* is estimated as in a fixed-sample design
 - Analyses (interim and final) are performed with adjusted alphas (< 0.05), which must not be the same
- An interim analysis is performed at n/2
 - If the study passes BE already → stop for success,
 otherwise 2nd group is administered
 - (If the result looks promising \rightarrow 2nd group is administered, otherwise stop for futility)
- Even if the study fails in the interim only by a slight margin, still n/2 have to be administered

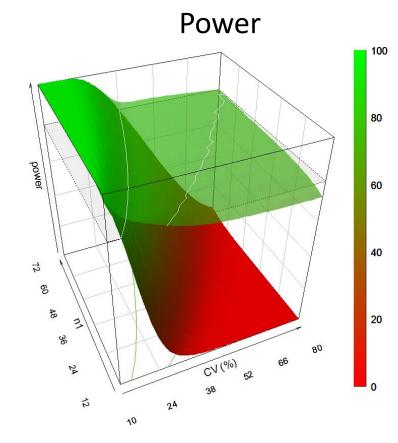

Adaptive Two-Stage Designs

- If a pivotal study of a bioequivalent product fails in a fixed-sample design (probability = 1 – power) and is repeated in a larger sample size, the data of the first is not used
- In the interim analysis
 - Whether or not an adjusted α has to be used depends on the method
 - If the study passes BE already → stop for success,
 otherwise the total sample size is re estimated and the 2nd group dosed
 - (If the result looks promising \rightarrow 2nd group is dosed, otherwise stop for futility)

Operating Characteristics (simulation-based TSD)

Maximum TIE at *CV* 24% and n_1 12: 0.04895

'Type 1' TSD (Potvin *et al.* B)


Conditions:

 $\alpha_{\rm adj}$ 0.0294 GMR 0.95 power 80%

CV 10 – 80% (step 2%)

 n_1 12 – 72 (step 2)

1 mio simulations in all combinations; significance limit for the Type I Error (TIE) 0.05036

Minimum final power at CV 80% and n_1 12: 72.24%

Remarks

- GSDs
 - If interim is not at n/2 and/or final not at $n \rightarrow$ further adjustment of α
- TSDs
 - Exact methods only for 2×2×2 crossover design
 - Futility rules
 - Reduce the Type I Error
 - Negative impact on power → simulations recommended
 - Small first stage not recommended → large sample size penalty
 - 0.0294 is not a 'natural constant' (different conditions \rightarrow different $\alpha_{\rm adj}$)

Suggestions for ICH M13C

- Inverse Normal Method for 2×2×2 crossover should be recommended (based on a mathematical proof)
 - Maximum combination test or
 - Standard combination test
- Simulation-based methods should be acceptable if maximum empiric Type I Error for the entire grid of CV / n_1 -combinations with 1 mio simulations ≤ 0.05036
 - Published methods
 - Alternatively simulations of the applicant with exhaustive documentation

Statistical challenges and opportunities in ICH M13C

Thank You!

Helmut Schütz

Center for Medical Data Science

1090 Vienna, Austria

helmut.schuetz@muv.ac.at

BEBAC

1070 Vienna, Austria helmut.schuetz@bebac.at

References

Scaled Average Bioequivalence

- 1. Tóthfalusi L, Endrényi L, García-Arieta A. *Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence*. 2009. doi:10.2165/11318040-000000000-00000
- 2. Haidar SH, Makhlouf F, Schuirmann DJ, Hyslop T, Davit B, Conner D, Yu LX. *Evaluation of a Scaling Approach for the Bioequivalence of Highly Variable Drugs*. 2008. doi:10.1208/s12248-008-9053-4
- 3. Endrényi L, Tóthfalusi L. *Regulatory and Study Conditions for the Determination of Bioequivalence of Highly Variable Drugs*. 2009. doi:10.18433/j3zw2c
- 4. Karalis V, Symillides M, Macheras P. *On the leveling-off properties of the new bioequivalence limits for highly variable drugs of the EMA guideline*. 2011. doi:10.1016/j.ejps.2011.09.008
- 5. Davit BM, Chen ML, Conner DP, Haidar SH, Kim S, Lee CH, Lionberger RA, Makhlouf FT, Nwakama PE, Patel DT, Schuirmann DJ, Yu LX. *Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration*. 2012. doi:10.1208/s12248-012-9406-x
- 6. Wonnemann M, Frömke C, Koch A. *Inflation of the Type I Error: Investigations on Regulatory Recommendations for Bioequivalence of Highly Variable Drugs*. 2015. doi:10.1007/s11095-014-1450-z
- 7. Muñoz J, Alcaide D, Ocaña J. *Consumer's risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs.* 2016. doi:10.1002/sim.6834
- 8. Labes D, Schütz H. *Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control.* 2016. doi:10.1007/s11095-016-2006-1
- 9. Tóthfalusi L, Endrényi L. *An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence*. AAPS J. 2016. doi:10.1208/s12248-016-9873-6
- 10. Tóthfalusi L, Endrényi L. *Algorithms for Evaluating Reference Scaled Average Bioequivalence: Power, Bias, and Consumer Risk.* 2017. doi:10.1002/sim.7440
- 11. Molins E, Cobo E, Ocaña J. Two-Stage Designs Versus European Scaled Average Designs in Bioequivalence Studies for Highly Variable Drugs: Which to Choose? 2017. doi:10.1002/sim.7452

- 12. Endrényi L, Tóthfalusi L. *Bioequivalence for highly variable drugs: regulatory agreements, disagreements, and harmonization*. 2019. doi:10.1007/s10928-019-09623-w
- 13. Deng Y, Zhou XH. *Methods to control the empirical type I error rate in average bioequivalence tests for highly variable drugs*. 2019. doi:10.1177/0962280219871589
- 14. Ocaña J, Muñoz J. Controlling type I error in the reference-scaled bioequivalence evaluation of highly variable drugs. 2019. doi:10.1002/pst.1950
- 15. Schütz H, Labes D, Wolfsegger MJ. *Critical Remarks on Reference-Scaled Average Bioequivalence*. 2022. doi:10.18433/jpps32892
- 16. Muñoz J, Ocaña J, Suárez R, Millapán C. Scaled average bioequivalence methods for highly variable drugs: Leveling-off soft limits and the EMA's 2010 guideline (some ways to improve its type I error control). 2024. doi:10.1002/sim.10021
- 17. Schütz H, Tomashevskiy M, Labes D. *replicateBE: Average Bioequivalence with Expanding Limits* (ABEL). 2022. doi:10.32614/CRAN.package.replicateBE
- 18. Labes D, Schütz H, Lang B. *PowerTOST: Power and Sample Size Based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies*. 2024. doi:10.32614/CRAN.package.PowerTOST

Group-Sequential Designs

- 1. Gould AL. *Group Sequential Extension of a Standard Bioequivalence Testing Procedure*. 1995. doi:10.1007/BF02353786
- 2. Hauck WW, Preston PE, Bois FY. *A Group Sequential Approach to Crossover Trials for Average Bioequivalence*. 1997. doi:105434097088351714
- 3. Jennison C, Turnbull BW. *Group sequential methods with applications to clinical trials*. Boca Raton: Chapman & Hall/CRC; 1999.

References

Adaptive Two-Stage Designs, Open-Source Software

- 1. Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA. Sequential design approaches for bioequivalence studies with crossover designs. 2008. doi:10.1002/pst.294
- Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ. Additional results for 'Sequential design approaches for bioequivalence studies with crossover designs'. 2011. doi:10.1002/pst.483
- 3. Fuglsang A. Sequential Bioequivalence Trial Designs with Increased Power and Controlled Type I Error Rates. 2013. doi:10.1208/s12248-013-9475-5
- 4. Karalis V, Macheras P. *An Insight into the Properties of a Two-Stage Design in Bioequivalence Studies.* 2013. doi:10.1007/s11095-013-1026-3
- 5. Karalis V. *The role of the upper sample size limit in two-stage bioequivalence designs*. 2013. doi:10.1016/j.ijpharm.2013.08.013
- 6. Fuglsang A. Futility Rules in Bioequivalence Trials with Sequential Designs. 2014. doi:10.1208/s12248-013-9540-0
- 7. Fuglsang A. Sequential Bioequivalence Approaches for Parallel Designs. 2014. doi:10.1208/s12248-014-9571-1
- 8. Golkowski D, Friede T, Kieser M. *Blinded sample size reestimation in crossover bioequivalence trials.* 2014. doi:10.1002/pst.1617
- 9. Karalis V, Macheras P. *On the Statistical Model of the Two-Stage Designs in Bioequivalence Assessment*. 2014. doi:10.1111/jphp.12164
- 10. Jones B, Kenward MG. *Design and analysis of crossover trials*. Boca Raton: Chapman & Hall/CRC; 3rd ed. 2015.
- 11. Schütz H. Two-stage designs in bioequivalence trials. 2015. doi:10.1007/s00228-015-1806-2
- 12. Kieser M, Rauch G. *Two-stage designs for cross-over bioequivalence trials*. 2015. doi:10.1002/sim.6487
- 13. Zheng Ch, Zhao L, Wang J. *Modifications of sequential designs in bioequivalence trials*. 2015. doi:10.1002/pst.1672

- 14. Xu J, Audet C, DiLiberti CE, Hauck WW, Montague TH, Parr AF, Potvin D, Schuirmann DJ. *Optimal adaptive sequential designs for crossover bioequivalence studies*. 2016. doi:10.1002/pst.1721
- 15. Molins E, Cobo E, Ocaña J. *Two-stage designs versus European scaled average designs in bioequi-valence studies for highly variable drugs: Which to choose?* 2017. doi:10.1002/sim.7452
- 16. Molins E, Labes D, Schütz H, Cobo E, Ocaña J. *An iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designs*. 2021. doi:10.1002/bimj.201900388
- 17. König F, Wolfsegger M, Jaki T, Schütz H, Wassmer G. *Adaptive two-stage bioequivalence trials with early stopping and sample size re-estimation*. 2015. <u>doi:10.1186/1745-6215-16-S2-P218</u>
- 18. Maurer W, Jones B, Chen Y. *Controlling the type 1 error rate in two-stage sequential designs when testing for average bioequivalence*. 2018. doi:10.1002/sim.7614
- 19. Schütz H. *Two-Stage Designs. Dealing with Uncertainty*. Presentation at Network for Scientific Excellence. Campinas. February 2020. https://bebac.at/lectures/Campinas2020-3.pdf
- 20. Kaza M, Sokolvskyi A, Rudzki PJ. 10th Anniversary of a Two-Stage Design in Bioequivalence. Why Has it Still Not Been Implemented? 2020. doi:10.1007/s11095-020-02871-3
- 21. Lee J, Feng K, Xu M, Gong X, Sun W, Kim J, Zhang Z, Wang M, Fang L, Zhao L. *Applications of Adaptive Designs in Generic Drug Development*. 2020. doi:10.1002/cpt.2050
- 22. Molins E, Labes D, Schütz H, Ocaña J. *betsd: Adjusting significance levels in two-stage adaptive 2×2 cross-over designs*. 2019. https://github.com/eduard-molins/betsd
- 23. Labes D, Lang B. Schütz H. *Power2Stage: Power and Sample-Size Distribution of 2-Stage Bioequivalence Studies*. 2021. doi:10.32614/CRAN.package.Power2Stage

