

Thomas Wolf • CCA-ShareAlike 3.0 Unported Wikimedia Commons • 2008

1

Fleming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 6b]

BC BC

Difference factor f_1 , similarity factor f_2

Difference factor *f*₁

- Percent difference between dissolution profiles at each time point
- Measurement of the relative error between the curves.

$$\boldsymbol{f}_{1} = 100 \left\{ \sum_{t=1}^{t=n} \left| \boldsymbol{R}_{t} - \boldsymbol{T}_{t} \right| / \sum_{t=1}^{t=n} \boldsymbol{R}_{t} \right\}$$

Similarity factor f₂

- Logarithmic reciprocal square root transformation of the sum of squared error.
- Measurement of the similarity in the percent dissolution between the curves.

$$f_{2} = 50 \cdot \log \left\{ 100 \cdot \left[\frac{1}{\sqrt{1 + \frac{1}{n} \sum_{t=1}^{t=n} (R_{t} - T_{t})^{2}}} \right] \right\}$$

Difference factor f_1 , similarity factor f_2

Simple example

n	3
$\Sigma (\boldsymbol{R}_t - \boldsymbol{T}_t)$	10
$\Sigma \mathbf{R}_t - \mathbf{T}_t $	10
$\Sigma (R_t - T_t)^2$	38
ΣR_t	258
f ₂	71.6
f ₂	3.9

t (min)	R _t (%)	T _t (%)	$\Delta \left(\boldsymbol{R}_{t} - \boldsymbol{T}_{t} \right)$	$\Delta R_t -$	$T_t \Delta^2$
15	83	78	5	5	25
30	85	83	2	2	4
45	90	87	3	3	9

Difference factor f_1 , similarity factor f_2

Certain conditions must be fullfilled for the application of f_2 .

- f_2 not required if product releases \geq 85% in all three media.
- 12 units of test and reference product.
 R_t and *T_t* are their arithmetic means.
- CV should not be >20% at ≤15 minutes.
- CV should not be >10% at other time points.
- Sampling time points after 85% release.
 - FDA: Only one measurement included for test product.
 - EMA: Not more than one mean value of >85% dissolved for each formulation.
 - WHO: Maximum of one time-point should be considered after 85% dissolution of the comparator (Brand/Reference/Innovator) product has been reached.

ne ·

Difference factor f_1 , similarity factor f_2

Different release characteristics

• Cave: Although f_1 (2.1) and f_2 (57.7) suggest similarity, the comparison is not suitable because the profiles display different release kinetics.

Vivian Gray, Dissolution Workshop. 10 December 2010.

5

Alternatives?

Suggested if variability (especially in early time points) is high

- Multivariate statistical distance (MSD)
 - MSD is estimated
 - Its 90% confidence interval calculated.
 - The upper limit compared to the similarity limit.
 - A subset of MSD is the Mahalanobis' Distance (MD).
 - Currently explored by the EMA's Biostatistical Working Party.
- Model-dependent approaches
 - Select a suitable model (quadratic, logistic, probit, Hill, Weibull, ...).
 - Similarity region is specified based on the variability.
 - Calculate MSD and CI as above.

A(D)ME

In vivo curve can be described by absorption (A) and elimination (metabolization + excretion)

- One-compartment model does not have D (distribution).
 - Example: $t_{1/2a}$ 1 h, $t_{1/2e}$ 8 h
 - After $3 \times t_{\frac{1}{2}a}$ (3 h) 87.5% are absorbed.
 - After $3 \times t_{\frac{1}{2}e}$ (24 h) 87.5% are eliminated.
 - In the *in vivo* curve the inflection point (where the curve changes from concave to convex) is seen at $2 \times t_{max}$ (6 h).

At this time absorption is essentially complete (98.44%) and the *in vivo* curve practically represents elimination only.

• We can get *in vivo* absorption by subtracting the estimated elimination.

7

A(D)ME

Reconstructing in vivo absorption (residual method)

- Fit elimination (λ_z from $2 \times t_{max}$ or later to t_z).
- Predict in vivo elimination.
- In vivo absorption is the in vivo curve minus the predicted elimination.

Different other methods exist.

- One-compartment model
 - Wagner-Nelson

 $abs(\%) = 100 \frac{C_t + k_{el} \cdot AUC_{0-t}}{k_{el} \cdot AUC_{0-\infty}}$

- Two-compartment model
 - Loo-Riegelman (needs true elimination from iv); the distribution phase is reconstructed.

Wagner-Nelson

D 100 mg, V 4 L, F 1, k_a 1 h⁻¹ ($t_{\frac{1}{2}}$ 0.69 h), $k_{e^{l}}$ 0.25 h⁻¹ ($t_{\frac{1}{2}}$ 2.77 h)

- Lin-up/log-down trapezoidal method for AUC_{0-t}.
- λ_z (estimated from 4 to 12 hours) = 0.2444.

•
$$AUC_{0-\infty} = AUC_{0-12} + C_{12} / \lambda_z = 99.68$$

t	С	AUC	abs (%)
(h)	(mg/mL)		
0.00	BQL	-	-
0.25	5.35	0.67	22.63
0.50	9.20	2.49	40.26
0.75	11.89	5.12	53.94
1.00	13.70	8.32	64.58
1.25	14.84	11.89	72.84
1.50	15.47	15.68	79.22
2.00	15.71	23.47	88.03
3.00	14.09	38.36	96.31
4.00	11.65	51.19	99.17
6.00	7.36	69.87	100.31
8.00	4.50	81.50	100.23
10.00	2.73	88.88	100.08
12.00	1.66	92.68	100.00

Fleming.

Three candidate formulations (fast, intermediate, slow)

Feming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 6b]

10

Different rates in vitro / in vivo

Not suitable for IVIVC (nonlinear relationship) 75 dissolved \$ 50 -O- 'absorbed 25 3 12 ٥ 6 9 time (h) 100 *in vivo* absorbed (%) 22

75

100

t	diss	abs
(h)	(%)	(%)
0.00	0.00	0.00
0.25	39.35	13.44
0.50	63.21	25.14
0.75	77.69	35.44
1.00	86.47	44.37
1.25	91.79	52.22
1.50	95.02	59.04
2.00	98.17	70.10
3.00	99.75	84.66
4.00	99.97	92.82
6.00	100.00	99.27
8.00	100.00	100.57
10.00	100.00	100.43
12.00	100.00	100.00

Fleming.

Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 6b]

25

0

50

in vitro dissolved (%)

Different rates in vitro / in vivo

- Modify the dissolution method (e.g., less agitation) to get a better match.
- Establish a Levy plot (time to get % dissolved or absorbed). Use interpolation to find dissolution times which match absorption.

• Calculate new *in vitro* sampling times. $t_{in vitro} = t_{in vivo} \times 0.3297 - 0.0208.$

in	vivo	dis	ss. time
<i>t</i> (h) a	abs (%)) (h)	(h:mm)
0.00	0.00	0.00	0:00
0.25	13.44	0.06	0:03
0.50	25.14	0.14	0:08
0.75	35.44	0.23	0:13
1.00	44.37	0.31	0:18
1.25	52.22	0.39	0:23
1.50	59.04	0.47	0:28
2.00	70.10	0.64	0:38
3.00	84.66	0.97	0:58
4.00	92.82	1.30	1:17
6.00	99.27	1.96	1:57

Alternative to Wagner-Nelson and Loo-Riegelman

Deconvolution: Derive *in vivo* input curve from *in vivo* profile.
 Only method which is can be applied if there are more than two compartments.
 Notation: f = g / h

Jean-Michel Cardot. IVIVC Workshop. Mumbai, 27 – 29 January 2012.

Fleming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 6b]

13

Alternative to Wagner-Nelson and Loo-Riegelman

• Convolution: Derive *in vivo* profile from simulated *in vivo* input curve (obtained by IVIVC). Notation: f = g * h

Jean-Michel Cardot. IVIVC Workshop. Mumbai, 27 – 29 January 2012.

Fleming. Bioequivalence, Dissolution & IVIVC | Berlin, 14 – 16 November 2016 [Session 6b]

Deconvolution / Convolution

- Already mathematically demanding for continous functions even more complicated if only data-pairs are available.
 - Numeric methods require equidistant supporting points. Must interpolate / impute data.
 - Requires additionally to % absorbed the rate of absorption *dA / dt* (method by Vaughan, Denis 1978).
 - Requires between six and ten sampling points in the absorption phase ($\leq 2 \times t_{max}$).

Jean-Michel Cardot. IVIVC Workshop. Mumbai, 27 – 29 January 2012.

IVIVC (Levels B and C)

Level B

- Correlation of statistical moments describing *in vitro* and *in vivo* profiles.
 - Mean dissolution time (*MDT*) with mean residence time and mean absorption time (*MRT*, *MAT*).
 Problem: *MRT* of *in vivo* profiles depend to a large part on distribution /

elimination. Needs iv (or at least solution) data to obtain MAT.

Level C

- Correlation of single-point metrics.
 - % dissolved (at least 80%) up to an certain time point with a PK metrics (e.g., C_{max} , truncated AUC).
 - Few 'working' examples (e.g., glibenclamide).

Jean-Michel Cardot. IVIVC Workshop. Mumbai, 27 – 29 January 2012.

16

IVIVC

Quite often what one thinks to be 'different' (based on a QC dissolution method) turns out to be similar *in vivo*.

- Modify formulations, perform *in vivo* pilot studies until you see a difference *there*.
 - Then (!) develop a discriminatory *in vitro* method (Session 8) which is able to predict *in vivo* absorption

- Try different agitation speeds, use surfactants, change the apparatus, if nothing helps explore biorelevant media.
- The final *in vitro* method likely has nothing in common with the one used in QC.
 If Earl Grey with a sip of milk is predictive, use it! (Jean-Michel Cardot)

- Once you found a discriminatory method, modify formulations to find one which matches the reference.
 - This does not guarantee that the reference will behaves *in vivo* like your best candidate.
 - Another pilot (T vs. R) makes sense (to estimate CV and GMR).

Similarity, Comparability and Correlation

Thank You! Open Questions?

Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>