

Statistical Design and Analysis III

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

life sciences

Dose proportionality may be evaluated in a twostep procedure

(Chow and Liu, Design and Analysis of Bioavailability and Bioequivalence Studies, Marcel Dekker, New York, pp 563–573 (3rd ed 2009)

Let Y be the response (AUC, C_{max}) and x the dose level. Since the standard deviation of Y increases with the dose, the primary assumption of dose proportionality is that the standard deviation of Y is proportional to x; that is,

 $Var(\mathbf{Y}) = \mathbf{x}^2 \sigma^2$,

where σ^2 consists of inter- and intrasubject variabilities.

informa

Two-step procedure

Under this assumption, following models are considered to evaluate the relation between response and dose x:

Model 1: $E(Y | x) = b \cdot x$

- Model 2: $E(Y | x) = a + b \cdot x$, where $a \neq 0$
- Model 3: $E(Y | x) = a \cdot x^b$, where a > 0 and $b \neq 0$

Two-step procedure Model 1 indicates that the relation between response and dose is linear. The dose response curve is a straight line, which passes through the origin. This model is commonly referred to as dose proportionality.

Two-step procedure

 Step 1 (dose proportionality) All dose dependent parameters (*e.g.*, AUC, C_{max}) are normalized to the dose of the reference prior to comparative analyses. Multiplicative model as usual in BE. Following hypotheses are evaluated during statistical analysis (given for bioavailability ratios):

 Two-step procedure Step 1 (dose proportionality) $\blacksquare H_{1a0}$: $\mu_{\text{test 1}}/\mu_{\text{ref.}} \le \theta_1$ or $\mu_{\text{test 1}}/\mu_{\text{ref.}} \ge \theta_2$: null hypothesis 1a ($\mu_{test 1}$ and μ_{ref} are not dose proportional) $-H_{1a1}$: $\theta_1 < \mu_{test 1} / \mu_{ref} < \theta_2$: alternative hypothesis 1a $(\mu_{\text{test 1}} \text{ and } \mu_{\text{ref.}} \text{ are dose proportional})$ • H_{2a0} : $\mu_{test 2}/\mu_{ref} \le \theta_1$ or $\mu_{test 2}/\mu_{ref} \ge \theta_2$: null hypothesis 2a ($\mu_{test 2}$ and μ_{ref} are not dose proportional) $-H_{2a1}$: $\theta_1 < \mu_{test 2} / \mu_{ref} < \theta_2$: alternative hypothesis 1a $(\mu_{\text{test 2}} \text{ and } \mu_{\text{ref.}} \text{ are dose proportional})$ The interval $[\theta_1, \theta_2]$ denotes the acceptance range

informa

 Two-step procedure Step 1 (dose proportionality) If the null hypothesis is rejected for a parameter, dose proportionality is proven within the compared dose levels. If, however, the null hypothesis is not rejected, in a second step dose linearity (Model 2), and departure from dose linearity (Model 3) has to be evaluated.

life sciences

Two-step procedure

Step 2 (dose linearity) Model 2 indicates that the relation between response and the dose follows a straight line with nonzero intercept (a). It will be tested using a weighted linear regression with weights equal to x⁻¹ with the original (untransformed) data (x, Y). The hypotheses of primary interest are given as:

- H₂₀: a=0 null hypothesis 2 (dose response curve passess through the origin)
- H₂₁: a≠0 alternative hypothesis 2 (nonzero intercept)

informa

life sciences

•Two-step procedure

 Step 2 (dose linearity) Model 3 indicates that the relation between response and the dose follows the form of a power curve with the exponent b. It will be tested using a weighted nonlinear regression with weights equal to x⁻¹ with the original (untransformed) data (x,Y). Model 3 will be evaluated by examining the 95% confidence interval of the exponent b for departure from one.

life sciences

Dose Proportionality

 Two-step procedure Step 2 (dose linearity) The hypotheses of primary interest are given as: H₃₀: b=1 null hypothesis 3 (no departure from dose linearity) $H_{31}: b \neq 1$ alternative hypothesis 3 (dose response) curve follows a power curve) The departure from dose linearity will be evaluated by the 95% confidence interval (L,U) for b according to following decision criteria:

Two-step procedure

Step 2 (dose linearity)

if 0.75 <l<1.0<1.25< th=""><th>no departure from dose linearity (<i>i.e.</i>, Model 2 holds)</th></l<1.0<1.25<>	no departure from dose linearity (<i>i.e.</i> , Model 2 holds)
if 1.0 <l<u<1.25 or<br="">0.75<l<u<1.0< td=""><td>slight departure from dose linearity, but no practical significance from dose linearity</td></l<u<1.0<></l<u<1.25>	slight departure from dose linearity, but no practical significance from dose linearity
if L>1.25 or U<0.75	reject hypothesis of dose linearity (<i>i.e.</i> , Model 3 holds)

Two-step procedure

Example (FIM biological, 6 dose levels, C_{max})

response	b	95 % (CI (L,U)	CV%	Corr.
C _{max}	0.587	0.471	0.704	7.28	0.9446

U_b < 0.75 Model 3 holds (deviation from dose linearity)

Two-step procedure

Example (FIM, 6 dose levels, C_{max})

Thank You! Statistical Design and Analysis III Open Questions?

(WinNonlin User model in your handouts – use at your own risk!)

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria <u>helmut.schuetz@bebac.at</u>

life sciences

WinNonlin user model

remark	DOSE PROPORTIONALITY, Chow/Liu 2009 p 564 Models 1-4
remark	data in original (untransformed) scale (X/Y)
remark	weight = 1/x, weights must be provided in column 3
remark	(c) Helmut Schuetz, BEBAC, 1070 Vienna, Austria
model 1	
remark	Dose Proportionality
remark	Model 1: E(Y)=bx (linear through origin)
remark	bl = slope
remark	weight = $1/x$
commands	
dnames 'dose	''response'
npar 1	
pname 'b1'	
initial 1	
nobounds	
method 3	
weight	
end	
func 1	
f = b1 * x	
end	
80m	

informa

life sciences

eom

Dose Proportionality

WinNonlin user model

model 2 Dose Proportionality (Dose Linearity) remark Model 2: E(Y)=a+bx (linear) remark where a#0 remark remark a = intercept b = sloperemark weight = 1/xremark commands dnames 'dose' 'response' npar 2 pname 'a2' 'b2' initial 0 1 nobounds method 3 weight end func 1 f = a2 + b2 * xend

WinNonlin user model

```
model 3
            Dose Proportionality (Nonlinear PK)
remark
            Model 3: E(Y)=a*x^b (power function)
remark
                     where a>0 and b#0
remark
remark
                     a = coefficient
                     b = exponent ('curvature')
remark
                     weight = 1/x
remark
commands
dnames 'dose' 'response'
npar 2
pname 'a3' 'b3'
initial 1 1
nobounds
weight
end
func 1
f = a3 * x * b3
end
eom
```


WinNonlin user model

```
model 4
            Dose Proportionality (Nonlinear PK)
remark
            Model 4: E(Y)=a+c*x^b (power function with intercept)
remark
                     where a#0 and/or b#1
remark
remark
                     a = intercept
                     b = exponent ('curvature')
remark
                     c = coefficient
remark
remark
                    weight = 1/x
commands
dnames 'dose' 'response'
npar 3
pname 'a4' 'b4' 'c4'
initial 0 1 1
nobounds
weight
end
func 1
f = a4 + c4 * x ** b4
end
```

eom

informa