To bear in Remembrance... Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve. Karl R. Popper Even though it's applied science we're dealin' with, it still is - science! Leslie Z. Benet #### **Overview** - 'Classical' sample size estimation in BE - Patient's & producer's risk - Power in study planning - Uncertainties - Variability - Test/Reference-ratio - Sensitivity analysis - Recent developments - Review of guidelines ### α and β - All formal decisions are subjected to two types of error: - α Probability of Error Type I (aka Risk Type I) - Probability of Error Type II (aka Risk Type II) Example from the justice system: | Verdict | Defendant innocent | Defendant guilty | | |--|--------------------|------------------|--| | Presumption of innocence not accepted (guilty) | Error type I | Correct | | | Presumption of innocence accepted (not guilty) | Correct | Error type II | | #### α and β #### Or in more statistical terms: | Decision | Null hypothesis true | Null hypothesis false | | |----------------------------------|----------------------|---------------------------|--| | Null hypothesis rejected | Error type I | Correct (H _a) | | | Failed to reject null hypothesis | Correct (H_0) | Error type II | | # •In BE-testing the null hypothesis is bioinequivalence $(\mu_1 \neq \mu_2)!$ | Decision | Null hypothesis true | Null hypothesis false | | |----------------------------------|----------------------|-----------------------|--| | Null hypothesis rejected | Patient's risk | Correct (BE) | | | Failed to reject null hypothesis | Correct (not BE) | Producer's risk | | #### α - •Patient's Risk to be treated with an inequivalent formulation (H_0 falsely rejected) - BA of the test compared to reference in a *particular* patient is risky *either* below 80% *or* above 125%. - If we keep the risk of particular patients at α 0.05 (5%), the risk of the entire population of patients (<80% and >125%) is $2 \times \alpha$ (10%) expressed as: 90% CI = $1 2 \times \alpha = 0.90$. patient population [0.8,1.25] # \dots and β - Producer's Risk to get no approval of an equivalent formulation (H₀ falsely not rejected) - Set in study planning to ≤ 0.2 (20%), where power = $1 \beta = \ge 80\%$ - If power is set to 80 %, one out of five studies will fail just by chance! $$\alpha \, 0.05$$ BE not BE $\beta \, 0.20$ $0.20 = 1/5$ ■ A posteriori (post hoc) power does not make sense! Either a study has demonstrated BE or not. #### **Power Curves** Power to show BE with 12 - 36 subjects for CV_{intra} 20% *n* 24 ↓ 16: power $0.896 \rightarrow 0.735$ μ_T/μ_R 1.05 \(\psi \) 1.10: power $0.903 \rightarrow 0.700$ #### Power vs. Sample Size - It is not possible to calculate the required sample size directly. - Power is calculated instead; the smallest sample size which fulfills the minimum target power is used. - Example: α 0.05, target power 80% (β 0.2), T/R 0.95, CV_{intra} 20% \rightarrow minimum sample size 19 (power 81%), rounded up to the next even number in a 2×2 study (power 83%). | n | power | |----|--------| | 16 | 73.54% | | 17 | 76.51% | | 18 | 79.12% | | 19 | 81.43% | | 20 | 83.47% | # Power vs. Sample Size 2×2 cross-over, T/R 0.95, AR 80–125%, target power 80% # Background - Reminder: Sample Size is not directly obtained; only power - Solution given by DB Owen (1965) as a difference of two bivariate noncentral t-distributions - Definite integrals cannot be solved in closed form - the most advanced is AS 243 of RV Lenth; implemented in R, FARTSSIE, EFG). nQuery uses an earlier version (AS 184). # Background - Power estimations... - "Brute force' methods (also called 'resampling' or 'Monte Carlo') converge asymptotically to the true power; need a good random number generator (e.g., Mersenne Twister) and may be time-consuming - 'Asymptotic' methods use large sample approximations - Approximations provide algorithms which should converge to the desired power based on the t-distribution #### Sample Size (Guidelines) - Recommended minimum - 12 WHO, EU, CAN, NZ, AUS, AR, MZ, ASEAN States, RSA, Russia (2011 Draft) - USA 'A pilot study that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.' - ■18 Russia (2008) - 20 RSA (MR formulations) - 24 Saudia Arabia (12 to 24 if statistically justifiable) - 24 Brazil - 'Sufficient number' Japan #### Sample Size (Limits) #### Maximum - NZ: If the calculated number of subjects appears to be higher than is ethically justifiable, it may be necessary to accept a statistical power which is less than desirable. Normally it is not practical to use more than about 40 subjects in a bioavailability study. - All others: Not specified (judged by IEC/IRB or local Authorities). ICH F9. Section 3.5 applies: "The number of ICH E9, Section 3.5 applies: "The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed." ### Power & Sample Size #### Reminder Generally power is set to at least 80% (β , error type II: producers's risk to get no approval for a bioequivalent formulation; power = $1 - \beta$). #### 1 out of 5 studies will fail just by chance! - If you plan for power of less than 70%, probably you will face problems with the ethics committee (ICH E9). - If you plan for power of more than 90% (especially with low variability drugs), problems with regulators are possible ('forced bioequivalence'). - Add subjects ('alternates') according to the expected drop-out rate – especially for studies with more than two periods or multiple-dose studies. #### US FDA, Canada TPD - Statistical Approaches to Establishing Bioequivalence (2001) - Based on maximum difference of 5%. - ■Sample size based on 80 90% power. - Draft GL (2010)* - Consider potency differences. - ■Sample size based on 80 90% power. - Do not interpolate linear between CVs (as stated in the GL)! ^{*} All points removed in current (2012) GL. #### EU - EMEA NfG on BA/BE (2001) - Detailed information (data sources, significance level, expected deviation, desired power). - EMA GL on BE (2010) - Batches must not differ more than 5%. - The number of subjects to be included in the study should be based on an appropriate sample size calculation. Cookbook? # **Hierarchy of Designs** - The more 'sophisticated' a design is, the more information can be extracted. - Hierarchy of designs: ``` Fully replicate (TRTR | RTRT, TRT | RTR) > Partial replicate (TRR | RTR | RRT) > Standard 2×2 cross-over (RT | RT) > Parallel (R | T) ``` Variances which can be estimated: Parallel: total variance (between + within) 2×2 Xover: + between, within subjects 4 Partial replicate: + within subjects (reference) Full replicate: + within subjects (reference, test) 🖈 # Coefficient(s) of Variation - From any design one gets variances of lower design levels also. - Total CV% from a 2×2 cross-over used in planning a parallel design study: - Intra-subject CV% (within) $\sim CV_{intra}\% = 100 \cdot \sqrt{e^{MSE_W}} 1$ - Inter-subject CV% (between) - Total CV% (pooled) Fotal CV% (pooled) $$CV_{\text{inter}}\% = 100 \cdot \sqrt{e^{\frac{MSE_B - MSE_W}{2}}}$$ $$CV_{\text{total}}\% = 100 \cdot \sqrt{e^{\frac{MSE_B + MSE_W}{2}}} - 1$$ #### Coefficient(s) of Variation - CVs of higher design levels not available. - If only mean ± SD of reference is available... - Avoid 'rule of thumb' CV_{intra}=60% of CV_{total} - Don't plan a cross-over based on CV_{total} - Examples (cross-over studies) | drug, formulation | design | n | metric | CV _{intra} | CV _{inter} | CV_total | |--------------------|--------|----|--|---------------------|---------------------|------------| | methylphenidate MR | SD | 12 | AUC _t | 7.00 | 19.1 | 20.4 | | paroxetine MR | MD | 32 | $AUC_{\scriptscriptstyle{\mathtt{T}}}$ | 25.2 | 55.1 | 62.1 | | lansoprazole DR | SD | 47 | C _{max} | 47.0 | 25.1 | 54.6 | - Pilot study unavoidable, unless - Two-stage sequential design is used #### **Data from Pilot Studies** •Estimated CVs have a high degree of uncertainty (in the pivotal study it is more likely that you will be able to reproduce the PE, than the CV) The smaller the size of the pilot, the more uncertain the outcome. - The more formulations you have tested, lesser degrees of freedom will result in worse estimates. - Remember: CV is an estimate not carved in stone! #### Pilot Studies: Sample Size - Small pilot studies (sample size <12) - Are useful in checking the sampling schedule and - the appropriateness of the analytical method, but - are not suitable for the purpose of sample size planning! - Sample sizes (T/R 0.95, power ≥80%) based on a n=10 pilot study library(PowerTOST) expsampleN.TOST(alpha=0.05, targetpower=0.80, theta1=0.80, theta2=1.25, theta0=0.95, CV=0.40, dfCV=24-2, alpha2=0.05, design="2x2") | CV% | | CV | ratio | | |-----|-----------------|----|---------------|--| | | fixed uncertain | | uncert./fixed | | | 20 | 20 | 24 | 1.200 | | | 25 | 28 | 36 | 1.286 | | | 30 | 40 | 52 | 1.300 | | | 35 | 52 | 68 | 1.308 | | | 40 | 66 | 86 | 1.303 | | #### Pilot Studies: Sample Size - Moderate sized pilot studies (sample size ~12–24) lead to more consistent results (both CV and PE). - If you stated a procedure in your protocol, even BE may be claimed in the pilot study, and no further study will be necessary (US-FDA). - If you have some previous hints of high intrasubject variability (>30%), a pilot study size of at least 24 subjects is reasonable. - A Sequential Design may also avoid an unnecessarily large pivotal study. #### Pilot Studies: Sample Size - •Do not use the pilot study's CV, but calculate an upper confidence interval! - Gould (1995) recommends a 75% CI (*i.e.*, a producer's risk of 25%). - Apply Bayesian Methods (Julious and Owen 2006, Julious 2010) implemented in *R's PowerTOST/expsampleN.TOST*. - Unless you are under time pressure, a Two-Stage Sequential Design will help in dealing with the uncertain estimate from the pilot study. #### **Hints** - Literature search for CV% - Preferably other BE studies (the bigger, the better!) - PK interaction studies (Cave: Mainly in steady state! Generally lower CV than after SD). - Food studies (CV higher/lower than fasted!) - If CV_{intra} not given (quite often), a little algebra helps. All you need is the 90% geometric confidence interval and the sample size. - Calculation of CV_{intra} from CI - Point estimate (*PE*) from the Confidence Limits $$PE = \sqrt{CL_{lo} \cdot CL_{hi}}$$ - Estimate the number of subjects / sequence (example 2×2 cross-over) - If total sample size (N) is an even number, assume (!) $n_1 = n_2 = \frac{1}{2}N$ - ▶ If N is an odd number, assume (!) $n_1 = \frac{1}{2}N + \frac{1}{2}$, $n_2 = \frac{1}{2}N \frac{1}{2}$ (not $n_1 = n_2 = \frac{1}{2}N$!) - Difference between one *CL* and the *PE* in log-scale; use the *CL* which is given with more significant digits $$\Delta_{CL} = \ln PE - \ln CL_{lo}$$ or $\Delta_{CL} = \ln CL_{hi} - \ln PE$ - Calculation of CV_{intra} from CI (cont'd) - Calculate the Mean Square Error (MSE) $$MSE = 2 \frac{\Delta_{CL}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \cdot t_{1-2 \cdot \alpha, n_1 + n_2 - 2}}}$$ CV_{intra} from MSE as usual $$CV_{\text{intra}}\% = 100 \cdot \sqrt{e^{MSE} - 1}$$ - Calculation of CV_{intra} from CI (cont'd) - Example: 90% CI [0.91 1.15], N 21 $(n_1 = 11, n_2 = 10)$ $$PE = \sqrt{0.91 \cdot 1.15} = 1.023$$ $$\Delta_{CI} = \ln 1.15 - \ln 1.023 = 0.11702$$ $$MSE = 2 \left(\frac{0.11702}{\sqrt{\left(\frac{1}{11} + \frac{1}{10}\right) \times 1.729}} \right)^{2} = 0.04798$$ $$CV_{\text{intra}}\% = 100 \times \sqrt{e^{0.04798} - 1} = 22.2\%$$ #### Proof: CI from calculated values **Example:** 90% CI [0.91 - 1.15], N 21 $(n_1 = 11, n_2 = 10)$ $$\ln PE = \ln \sqrt{CL_{lo} \cdot CL_{hi}} = \ln \sqrt{0.91 \times 1.15} = 0.02274$$ $$SE_{\Delta} = \sqrt{\frac{2 \cdot MSE}{N}} = \sqrt{\frac{2 \times 0.04798}{21}} = 0.067598$$ $$CI = e^{\ln PE \pm t \cdot SE_{\Lambda}} = e^{0.02274 \pm 1.729 \times 0.067598}$$ $$CI_{lo} = e^{0.02274 - 1.729 \times 0.067598} = 0.91$$ $$CI_{hi} = e^{0.02274 + 1.729 \times 0.067598} = 1.15$$ ### Sensitivity to Imbalance - If the study was more imbalanced than assumed, the estimated CV is conservative - Example: 90% CI [0.89 1.15], N 24 (n₁ = 16, n₂ = 8, but not reported as such); CV 24.74% in the study Balanced Sequences assumed... | n ₁ | n ₂ | CV% | |----------------|----------------|-------| | 12 | 12 | 26.29 | | 13 | 11 | 26.20 | | 14 | 10 | 25.91 | | 15 | 9 | 25.43 | | 16 | 8 | 24.74 | Sequences in study ### No Algebra... •Implemented in *R*-package *PowerTOST*, function *CVfromCI* (not only 2×2 cross-over, but also parallel groups, higher order cross-overs, replicate designs). Example: ``` library(PowerTOST) CVfromCI(lower=0.91, upper=1.15, n=21, design="2x2", alpha=0.05) [1] 0.2219886 ``` #### Literature data **Doxicycline** (37 studies from Blume/Mutschler, *Bioäquivalenz: Qualitätsbewertung wirkstoffgleicher Fertigarzneimittel*, GOVI-Verlag, Frankfurt am Main/Eschborn, 1989-1996) - Intra-subject CV from different studies can be pooled (LA Gould 1995, Patterson and Jones 2006) - In the parametric model of log-transformed data, additivity of variances (not of CVs!) apply. - Do not use the arithmetic mean (or the geometric mean either) of CVs. - Before pooling variances must be weighted according to the studies' sample size and sequences - Larger studies are more influentual than smaller ones. - More sequences (with the same n) give higher CV. - Intra-subject CV from different Xover studies - Calculate the variance from CV $$\sigma_W^2 = \ln(CV_{\text{intra}}^2 + 1)$$ Calculate the total variance weighted by df $$\sum \sigma_W^2 df$$ Calculate the pooled CV from total variance $$CV = \sqrt{e^{\sum \sigma_W^2 df / \sum df} - 1}$$ Optionally calculate an upper $(1-\alpha)$ % confidence limit on the pooled CV (recommended α = 0.25) $$CL_{CV} = \sqrt{e^{\sum \sigma_W^2 df / \chi_{\alpha, \sum df}^2} - 1}$$ #### Degrees of freedom of various Xover designs | Name | df | Name in PowerTOST | |------------------------------|--------|-------------------| | 2×2×2 cross over | n – 2 | 2x2 | | 3×3 Latin Squares | 2n – 4 | 3x3 | | 6 sequence Williams' design | 2n – 4 | 3x6x3 | | 4×4 Latin Squares, Williams' | 3n – 6 | 4x4 | | 2×2×3 replicate design | 2n – 3 | 2x2x3 | | 2×2×4 replicate design | 3n – 4 | 2x2x4 | | 2×4×4 replicate design | 3n – 4 | 2x4x4 | | 2×3×3 partial replicate | 3n – 4 | 2x3x2 | Example: 3 studies, different Xover designs | CV _{intra} | n | seq. | df | σ_W | σ^2_W | $\sigma^2_W \times df$ | ./2 | 2.1566/56 | |---------------------------|---|-----------|----|------------|-----------------------------|------------------------|---------------------------|--| | 15% | 12 | 6 | 20 | 0.149 | 0.0223 | 0.4450 | \ \ - | // // // // // // // // // // // // // | | 25% | 16 | 2 / | 14 | 0.246 | 0.0606 | 0.8487 | | | | 20% | 24 | 2 | 22 | 0.198 | 0.0392 | 0.8629 | $\sigma_{ extit{pooled}}$ | σ^2_{pooled} | | N | 52 | $/\Sigma$ | 56 | | ${\mathcal \Sigma}$ | 2.1566 | 0.196 | 0.0385 | | | n-2
2×n-4 100√e ^{0.0385} -1 | | | | CV _{pooled} 19.81% | CV _{g.mean} | | | | | | | | α | $1-\alpha$ | $\chi^{2}(\alpha,df)$ | | | | $0\sqrt{e^{56\times0.0}}$ | 385/4 | 8.546 | | 0.25 | 0.75 | 48.546 | 21.31% | +7.6% | R package PowerTost function CVpooled, example's data. ``` library(PowerTOST) CVs <- (" PKmetric | CV | n | design | source AUC | 0.15 | 12 | 3x6x3 | study 1 AUC | 0.25 | 16 | 2x2 study 2 AUC | 0.20 | 24 | 2x2 study 3 ") txtcon <- textConnection(CVs)</pre> CVdata <- read.table(txtcon, header=TRUE, sep="|",</pre> strip.white=TRUE, as.is=TRUE) close(txtcon) CVsAUC <- subset(CVdata,PKmetric=="AUC")</pre> print(CVpooled(CVsAUC, alpha=0.25), digits=4, verbose=TRUE) Pooled CV = 0.1981 with 56 degrees of freedom Upper 75% confidence limit of CV = 0.2131 ``` Or you may combine pooling with an estimated sample size based on uncertain CVs (we will see later what that means). R package PowerTost function expsampleN.TOST, data of last example. CVs and degrees of freedom must be given as vectors: CV = c(0.15,0.25,0.2), dfCV = c(20,14,22) ``` library(PowerTOST) expsampleN.TOST(alpha=0.05, targetpower=0.8, theta0=0.95, CV=c(0.15,0.25,0.2), dfCV=c(20,14,22), alpha2=0.25, design="2x2", print=TRUE, details=TRUE) ``` ``` ++++++ Equivalence test - TOST ++++++ Sample size est. with uncertain CV Study design: 2x2 crossover Design characteristics: df = n-2, design const. = 2, step = 2 log-transformed data (multiplicative model) alpha = 0.05, target power = 0.8 BE margins = 0.8 ... 1.25 Null (true) ratio = 0.95 Variability data CV df 0.15 20 0.25 14 0.20 22 CV(pooled) = 0.1981467 \text{ with } 56 \text{ df} one-sided upper CL = 0.2131329 (level = 75%) Sample size search exp. power 16 0.733033 18 0.788859 20 0.832028 ``` - •'Doing the maths' is just part of the job! - Does it make sense to pool studies of different 'quality'? - The reference product may have been subjected to many (minor only?) changes from the formulation used in early publications. - Different bioanalytical methods are applied. Newer (e.g. LC/MS-MS) methods are not necessarily better in terms of CV (matrix effects!). - Generally we have insufficient information about the clinical setup (e.g. posture control). - Review studies critically; don't try to mix oil with water. #### **Tools** - Sample Size Tables (Phillips, Diletti, Hauschke, Chow, Julious, ...) - Approximations (Diletti, Chow, Julious, ...) - General purpose (SAS, S+, R, StaTable, ...) - Specialized Software (nQuery Advisor, PASS, FARTSSIE, StudySize, ...) - Exact method (Owen implemented in *R*-package *PowerTOST*)* - * Thanks to Detlew Labes! # Approximations obsolete - Exact sample size tables still useful in checking plausibility of software's results - Approximations based on noncentral t (FARTSSIE17) http://individual.utoronto.ca/ddubins/FARTSSIE17.xls or $$\mathbb{C}/S+ \rightarrow$$ Exact method (Owen) in R-package PowerTOST http://cran.r-project.org/web/packages/PowerTOST/ ``` require(PowerTOST) sampleN.TOST(alpha=0.05, targetpower=0.80, theta0=0.95, CV=0.30, design='2x2') ``` ``` alpha <- 0.05 <- 0.30 # intra-subject CV CV theta1 <- 0.80 # lower acceptance limit theta2 <- 1/theta1 # upper acceptance limit theta0 <- 0.95 # expected ratio T/R # minimum power PwrNeed <- 0.80 Limit <- 1000 # Upper Limit for Search # start value of sample size search <- 4 \leftarrow sqrt(2)*sqrt(log(CV^2+1)) repeat{ \leftarrow qt(1-alpha,n-2) <- sqrt(n)*(log(theta0)-log(theta1))/s nc1 <- sqrt(n)*(log(theta0)-log(theta2))/s prob1 \leftarrow pt(+t,n-2,nc1); prob2 \leftarrow pt(-t,n-2,nc2) power <- prob2-prob1</pre> # increment sample size if(power >= PwrNeed | (n-2) >= Limit) break } if(Total == Limit){ cat('Search stopped at Limit', Limit, obtained Power', power*100, '%\n') cat('Sample Size', Total, '(Power', power*100, '%)\n') ``` # Comparison | | • | _ | • | 7 | |---|----|----|-----|----| | " | N | // | u, | 1. | | | ٠. | ″ | - / | • | | original values | Method | Algorithm | 5 | 7.5 | 10 | 12 | 12.5 | 14 | 15 | 16 | 17.5 | 18 | 20 | 22 | |--------------------------|-------------|-----------|----|-----|----|----|------|----|----|----|------|----|----|----| | PowerTOST 1.1-02 (2013) | exact | Owen's Q | 4 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | Patterson & Jones (2006) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | Diletti et al. (1991) | noncentr. t | Owen's Q | 4 | 5 | 7 | NA | 9 | NA | 12 | NA | 15 | NA | 19 | NA | | nQuery Advisor 7 (2007) | noncentr. t | AS 184 | 4 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | FARTSSIE 1.7 (2010) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | EFG 2.01 (2009) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | LI G 2.01 (2009) | brute force | ElMaestro | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | StudySize 2.0.1 (2006) | central t | ? | NA | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | Hauschke et al. (1992) | approx. t | | NA | NA | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | Chow & Wang (2001) | approx. t | | NA | 6 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 18 | 22 | | Kieser & Hauschke (1999) | approx. t | | 2 | NA | 6 | 8 | NA | 10 | 12 | 14 | NA | 16 | 20 | 24 | #### CV% | original values | Method | Algorithm | 22.5 | 24 | 25 | 26 | 27.5 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | |-------------------------------|-------------|-----------|------|----|----|----|------|----|----|----|----|----|----|----| | PowerTOST 1.1-02 (2013) | exact | Owen's Q | 24 | 26 | 28 | 30 | 34 | 34 | 40 | 44 | 50 | 54 | 60 | 66 | | Patterson & Jones (2006) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | Diletti <i>et al.</i> (1991) | noncentr. t | Owen's Q | 23 | NA | 28 | NA | 33 | NA | 39 | NA | NA | NA | NA | NA | | nQuery Advisor 7 (2007) | noncentr. t | AS 184 | 24 | 26 | 28 | 30 | 34 | 34 | 40 | 44 | 50 | 54 | 60 | 66 | | FARTSSIE 1.7 (2010) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | EFG 2.01 (2009) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | EFG 2.01 (2009) | brute force | ElMaestro | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | StudySize 2.0.1 (2006) | central t | ? | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | Hauschke <i>et al.</i> (1992) | approx. t | | 24 | 26 | 28 | 30 | 34 | 36 | 40 | 46 | 50 | 56 | 64 | 70 | | Chow & Wang (2001) | approx. t | | 24 | 26 | 28 | 30 | 34 | 34 | 38 | 44 | 50 | 56 | 62 | 68 | | Kieser & Hauschke (1999) | approx. t | | NA | 28 | 30 | 32 | NA | 38 | 42 | 48 | 54 | 60 | 66 | 74 | # Sample size tables #### Diletti E, Hauschke D and VW Steinijans Sample size determination for bioequivalence assessment by means of confidence intervals Int J Clin Pharmacol Ther Toxicol 29/1, 1–8 (1991) | (| α 0.05 | 5, ⊿ 0 | .2 [0.8 | 30 – 1 | .25], I | Powe | r 80% | | | |--------|---------------|--------|---------|--------|---------|------|-------|------|--| | CV% | PE (GMR, T/R) | | | | | | | | | | C V 70 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | | | 5.0 | 11 | 5 | 4 | 4 | 4 | 5 | 7 | 22 | | | 7.5 | 21 | 7 | 5 | 5 | 5 | 7 | 12 | 44 | | | 10.0 | 35 | 11 | 7 | 6 | 7 | 10 | 20 | 75 | | | 12.5 | 54 | 16 | 9 | 8 | 9 | 14 | 30 | 117 | | | 15.0 | 77 | 22 | 12 | 10 | 12 | 19 | 41 | 167 | | | 17.5 | 103 | 29 | 15 | 13 | 15 | 25 | 56 | 226 | | | 20.0 | 134 | 37 | 19 | 16 | 18 | 32 | 72 | 293 | | | 22.5 | 168 | 46 | 23 | 19 | 23 | 39 | 90 | 368 | | | 25.0 | 206 | 56 | 28 | 23 | 27 | 48 | 110 | 452 | | | 27.5 | 247 | 67 | 33 | 27 | 33 | 57 | 132 | 543 | | | 30.0 | 292 | 79 | 39 | 32 | 38 | 67 | 155 | 641 | | | (| $lpha$ 0.05, Δ 0.2 [0.80 – 1.25], Power 90% | | | | | | | | | | | |--------|----------------------------------------------------|------|------|--------------|------|------|------|------|--|--|--| | CV% | | | Pl | E (GMR, T/R) | | | | | | | | | C V 70 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | | | | | 5.0 | 14 | 6 | 4 | 4 | 4 | 5 | 8 | 28 | | | | | 7.5 | 28 | 9 | 6 | 5 | 6 | 8 | 16 | 60 | | | | | 10.0 | 48 | 14 | 8 | 7 | 8 | 13 | 26 | 104 | | | | | 12.5 | 74 | 21 | 11 | 9 | 11 | 18 | 40 | 161 | | | | | 15.0 | 106 | 29 | 15 | 12 | 15 | 25 | 57 | 231 | | | | | 17.5 | 142 | 39 | 20 | 15 | 19 | 34 | 75 | 312 | | | | | 20.0 | 185 | 50 | 26 | 19 | 24 | 43 | 99 | 405 | | | | | 22.5 | 232 | 63 | 31 | 23 | 30 | 54 | 124 | 509 | | | | | 25.0 | 284 | 77 | 37 | 28 | 36 | 65 | 151 | 625 | | | | | 27.5 | 342 | 92 | 44 | 34 | 43 | 78 | 181 | 751 | | | | | 30.0 | 403 | 108 | 52 | 39 | 51 | 92 | 214 | 888 | | | | # Sample size tables #### Tóthfalusi L and L Endrényi Sample Sizes for Designing Bioequivalene Studies for Highly Variable Drugs J Pharm Pharmaceut Sci 15/1, 73–84 (2011) | α 0 | lpha 0.05, ABEL (EMA), partial repl., Power 80% | | | | | | | | | | | |------------|-------------------------------------------------|------|------|-------|---------|------|------|------|--|--|--| | CV% | | | Pl | E (GN | 1R, T/I | R) | | | | | | | C V 70 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | | | | | 30 | 194 | 53 | 27 | 22 | 26 | 45 | 104 | >201 | | | | | 35 | 127 | 51 | 29 | 25 | 29 | 45 | 84 | >201 | | | | | 40 | 90 | 44 | 29 | 27 | 30 | 42 | 68 | 139 | | | | | 45 | 77 | 40 | 29 | 27 | 29 | 37 | 57 | 124 | | | | | 50 | 75 | 40 | 30 | 28 | 30 | 37 | 53 | 133 | | | | | 55 | 81 | 42 | 32 | 30 | 32 | 40 | 56 | 172 | | | | | 60 | 88 | 46 | 36 | 33 | 36 | 44 | 63 | >201 | | | | | 65 | 99 | 53 | 40 | 37 | 40 | 50 | 71 | >201 | | | | | 70 | 109 | 58 | 45 | 41 | 45 | 56 | 80 | >201 | | | | | 75 | 136 | 67 | 50 | 46 | 50 | 62 | 89 | >201 | | | | | 80 | 144 | 72 | 54 | 51 | 55 | 68 | 97 | >201 | | | | | α 0. | lpha 0.05, RSABE (FDA), partial repl., Power 80% | | | | | | | | | | | | | |-------------|--------------------------------------------------|------|------|-------|--------|------|------|------|--|--|--|--|--| | CV% | | | Pl | E (GN | IR, T/ | R) | | | | | | | | | C V 70 | 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | | | | | | | 30 | 145 | 45 | 24 | 21 | 24 | 39 | 82 | >201 | | | | | | | 35 | 74 | 37 | 24 | 22 | 25 | 34 | 54 | 109 | | | | | | | 40 | 60 | 33 | 24 | 22 | 24 | 31 | 47 | 104 | | | | | | | 45 | 59 | 31 | 23 | 22 | 24 | 29 | 43 | 116 | | | | | | | 50 | 66 | 30 | 24 | 22 | 23 | 28 | 41 | 133 | | | | | | | 55 | 80 | 30 | 24 | 22 | 24 | 28 | 44 | 172 | | | | | | | 60 | 88 | 31 | 24 | 23 | 24 | 30 | 50 | >201 | | | | | | | 65 | 98 | 32 | 25 | 24 | 25 | 31 | 53 | >201 | | | | | | | 70 | 106 | 35 | 26 | 25 | 26 | 31 | 62 | >201 | | | | | | | 75 | 136 | 38 | 27 | 26 | 27 | 34 | 70 | >201 | | | | | | | 80 | 144 | 40 | 40 | 27 | 29 | 37 | 76 | >201 | | | | | | # Sample size tables - •Never interpolate! - Use the most conservative cell entry (higher CV, PE away from 1) Example: Sample size for CV 18%, PE 0.92, 80% power? | CV% | | GMR, | | |--------|------|------|------| | C V /0 | 0.90 | 0.95 | 1.00 | | 17.5 | 29 | 15 | 13 | | 20.0 | 37 | 19 | 16 | | CV% | PE (GMR, T/R) | | | | | | |--------|---------------|------|------|--|--|--| | C V /0 | 0.90 | 0.95 | 1.00 | | | | | 17.5 | 29 | 15 | 13 | | | | | 20.0 | 37 | 19 | 16 | | | | Round up to next even number (38) ## Tables vs. calculations The penalty to be paid using tables might be high – especially if uprounding has to be applied. Sample sizes of the example: CV 18%, PE 0.92, 80% power - Table: n = 38 - Approximations - Hauschke et al. 1992: n = 24 - Chow and Wang 2001: n = 22 - FARTSSIE.xls: n = 22 - Exact: n = 22 ### Tables vs. calculations - •If we planned the study in 38 subjects (tables) instead of the required 22 (exact) we gain a lot of power, but how much? - •n = 22: power 80.55% - •n = 38: power 95.56% - If step sizes to wide calculations mandatory - PowerTOST supports simulations for ABEL and RSABE #### Tables vs. calculations ``` library(PowerTOST) sampleN.scABEL(CV=0.40, details=F) +++++ scaled (widened) ABEL ++++++ Sample size estimation Study design: 2x3x3 log-transformed data (multiplicative model) 1e+05 studies simulated. alpha = 0.05, target power = 0.8 CVw(T) = 0.4; CVw(R) = 0.4 Null (true) ratio = 0.95 ABE limits/PE constraints = 0.8...1.25 Regulatory settings: EMA - CVswitch = 0.3, cap on ABEL if CV > 0.5 - Regulatory constant = 0.76 ``` ``` library(PowerTOST) sampleN.RSABE(CV=0.40, details=F) ++++ Reference scaled ABE crit. ++++ Sample size estimation Study design: 2x3x3 log-transformed data (multiplicative model) 1e+05 studies simulated. alpha = 0.05, target power = 0.8 CVw(T) = 0.4; CVw(R) = 0.4 Null (true) ratio = 0.95 ABE limits/PE constraints = 0.8...1.25 Regulatory settings: FDA Sample size power ``` 0.808640 power Sample size - •ICH E9 (1998) - Section 3.5 Sample Size, paragraph 3 - The method by which the sample size is calculated should be given in the protocol [...]. The basis of these estimates should also be given. - It is important to investigate the sensitivity of the sample size estimate to a variety of deviations from these assumptions and this may be facilitated by providing a range of sample sizes appropriate for a reasonable range of deviations from assumptions. - In confirmatory trials, assumptions should normally be based on published data or on the results of earlier trials. •Example nQuery Advisor: $\sigma_w = \sqrt{\ln(CV_{\text{intra}}^2 + 1)}; \sqrt{\ln(0.2^2 + 1)} = 0.198042$ 20% CV: n=26 25% CV: power 90% \rightarrow 78% 20% CV, 4 drop outs: power 90% \rightarrow 87% 25% CV, 4 drop outs: power $90\% \rightarrow 70\%$ 20% CV, PE 90%: power 90% \rightarrow 67% #### Example PowerTOST, function sampleN.TOST To estimate Power for a given sample size, use function power. TOST ``` library(PowerTOST) power.TOST(alpha=0.05, theta0=0.95, CV=0.25, n=26, design="2x2") [1] 0.7760553 power.TOST(alpha=0.05, theta0=0.95, CV=0.20, n=22, design="2x2") [1] 0.8688866 power.TOST(alpha=0.05, theta0=0.95, CV=0.25, n=22, design="2x2") [1] 0.6953401 power.TOST(alpha=0.05, theta0=0.90, CV=0.20, n=26, design="2x2") [1] 0.6694514 power.TOST(alpha=0.05, theta0=0.90, CV=0.25, n=22, design="2x2") [1] 0.4509864 ``` - Must be done before the study (a priori) - The Myth of retrospective (a posteriori) Power... - High values do not further support the claim of already demonstrated bioequivalence. - Low values do not invalidate a bioequivalent formulation. - Further reader: RV Lenth (2000) JM Hoenig and DM Heisey (2001) P Bacchetti (2010) # Thank You! Sample Size Estimation for BE Studies Open Questions? Helmut Schütz BEBAC Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at #### To bear in Remembrance... Power. That which statisticians are always calculating but never have. Power: That which is wielded by the priesthood of clinical trials, the statisticians, and a stick which they use to beta their colleagues. Power Calculation – A guess masquerading as mathematics. Stephen Senn You should treat as many patients as possible with the new drugs while they still have the power to heal. Armand Trousseau # The Myth of Power There is simple intuition behind results like these: If my car made it to the top of the hill, then it is powerful enough to climb that hill; if it didn't, then it obviously isn't powerful enough. Retrospective power is an obvious answer to a rather uninteresting question. A more meaningful question is to ask whether the car is powerful enough to climb a particular hill never climbed before; or whether a different car can climb that new hill. Such questions are prospective, not retrospective. The fact that retrospective power adds no new information is harmless in its own right. However, in typical practice, it is used to exaggerate the validity of a significant result ("not only is it significant, but the test is really powerful!"), or to make excuses for a nonsignificant one ("well, P is .38, but that's only because the test isn't very powerful"). The latter case is like blaming the messenger. **RV** Lenth Two Sample-Size Practices that I don't recommend http://www.math.uiowa.edu/~rlenth/Power/2badHabits.pdf #### References - Collection of links to global documents http://bebac.at/Guidelines.htm - •ICH - E9: Statistical Principles for Clinical Trials (1998) - EMA-CPMP/CHMP/EWP - Points to Consider on Multiplicity Issues in Clinical Trials (2002) - BA/BE for HVDs/HVDPs: Concept Paper (2006) http://bebac.at/downloads/14723106en.pdf - Questions & Answers on the BA and BE Guideline (2006) http://bebac.at/downloads/4032606en.pdf - Draft Guideline on the Investigation of BE (2008) - Guideline on the Investigation of BE (2010) - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2011) - •US-FDA - Center for Drug Evaluation and Research (CDER) - Statistical Approaches Establishing Bioequivalence (2001) - Bioequivalence Recommendations for Specific Products (2007) - Midha KK, Ormsby ED, Hubbard JW, McKay G, Hawes EM, Gavalas L, and IJ McGilveray Logarithmic Transformation in Bioequivalence: Application with Two Formulations of Perphenazine J Pharm Sci 82/2, 138-144 (1993) - Hauschke D, Steinijans VW, and E Diletti Presentation of the intrasubject coefficient of variation for sample size planning in bioequivalence studies Int J Clin Pharmacol Ther 32/7, 376-378 (1994) - Diletti E, Hauschke D, and VW Steinijans Sample size determination for bioequivalence assessment by means of confidence intervals Int J Clin Pharm Ther Toxicol 29/1, 1-8 (1991) - Hauschke D, Steinijans VW, Diletti E, and M Burke Sample Size Determination for Bioequivalence Assessment Using a Multiplicative Model J Pharmacokin Biopharm 20/5, 557-561 (1992) - S-C Chow and H Wang On Sample Size Calculation in Bioequivalence Trials J Pharmacokin Pharmacodyn 28/2, 155-169 (2001) Errata: J Pharmacokin Pharmacodyn 29/2, 101-102 (2002) - DB Owen A special case of a bivariate non-central t-distribution Biometrika 52, 3/4, 437-446 (1965) #### References LA Gould Group Sequential Extension of a Standard Bioequivalence Testing Procedure J Pharmacokin Biopharm 23/1, 57–86 (1995) #### DOI: 10.1007/BF02353786 - Jones B and MG Kenward Design and Analysis of Cross-Over Trials Chapman & Hall/CRC, Boca Raton (2nd Edition 2000) - Hoenig JM and DM Heisey The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis The American Statistician 55/1, 19–24 (2001) http://www.vims.edu/people/hoenig_im/pubs/hoenig2.pdf - SA Julious Tutorial in Biostatistics. Sample sizes for clinical trials with Normal data Statistics in Medicine 23/12, 1921-1986 (2004) - Julious SA and RJ Owen Sample size calculations for clinical studies allowing for uncertainty about the variance Pharmaceutical Statistics 5/1, 29-37 (2006) - Patterson S and B Jones Determining Sample Size, in: Bioequivalence and Statistics in Clinical Pharmacology Chapman & Hall/CRC, Boca Raton (2006) - Tóthfalusi L, Endrényi L, and A Garcia Arieta Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence Clin Pharmacokinet 48/11, 725-743 (2009) - SA Julious Sample Sizes for Clinical Trials Chapman & Hall/CRC, Boca Raton (2010) - P Bacchetti Current sample size conventions: Flaws, harms, and alternatives BMC Medicine 8:17 (2010) http://www.biomedcentral.com/content/pdf/1741-7015-8-17.pdf - Tóthfalusi L and L Endrényi Sample Sizes for Designing Bioequivalene Studies for Highly Variable Drugs - J Pharm Pharmaceut Sci 15/1, 73–84 (2011) http://ejournals.library.ualberta.ca/index.php/JPPS/article/download/11612/9489 - D Labes Package 'PowerTOST' Version 1.1-02 (2013-02-28) http://cran.r- project.org/web/packages/PowerTOST/PowerTOST.pdf