Successfully Overcoming Sample Size Challenges in BE Studies Helmut Schütz BEBAC life sciences ### Sample Size (Limits) #### Minimum - 12: WHO, EU, CAN, NZ, AUS, AR, MZ, ASEAN States, RSA - 12: USA 'A pilot study that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (*e.g.*, 12) have completed the study.' - 20: RSA (MR formulations) - 24: Saudia Arabia (12 to 24 if statistically justifiable) - ■24: Brazil - Sufficient number: JPN ### Sample Size (Limits) #### Maximum - NZ: 'If the calculated number of subjects appears to be higher than is ethically justifiable, it may be necessary to accept a statistical power which is less than desirable. Normally it is not practical to use more than about 40 subjects in a bioavailability study.' - All others: Not specified (judged by IEC/IRB or local Authorities). - ICH E9, Section 3.5 applies: 'The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed.' ## Sample Size (Limits?) #### Reminder Generally power is set to at least 80 % (β , error type II: producers's risk to get no approval for a bioequivalent formulation; power = 1 – β). #### 1 out of 5 studies will fail just by chance! - If you plan for power of less than 70 %, problems with the ethics committee are likely (ICH E9). - If you plan for power of more than 90 % (especially with low variability drugs), problems with the regulator are possible ('forced bioequivalence'). - Add subjects ('alternates') according to the expected drop-out rate – especially for studies with more than two periods or multiple-dose studies. #### EU - EMEA NfG on BA/BE (2001) - Detailed information (data sources, significance level, expected deviation, desired power). - EMA GL on BE (2010) - Batches must not differ more than 5%. - The number of subjects to be included in the study should be based on an appropriate sample size calculation. Cookbook? #### Coefficient(s) of Variation - The more 'sophisticated' the design is, the more information one may extract. - Hierarchy of designs: Full replicate (TRTR | RTRT) → Partial replicate (TRR | RTR | RRT) → Standard 2×2 cross-over (RT | RT) → Parallel (R | T) - Variances which can be resolved: ``` Parallel: total variance (between+within) ``` 2x2 Xover: + between, within subjects 🖈 Partial replicate: + within subjects (reference) 🖈 Full replicate: + within subjects (reference, test) 🖈 #### Coefficient(s) of Variation - From any design one gets variances of *lower* design levels (only!) - Total CV% from a 2x2 cross-over used in planning a parallel design study: - Intra-subject CV% (within) $\sim CV_{\text{intra}}\% = 100 \cdot \sqrt{e^{MSE_W}} 1$ - Inter-subject CV% (between) - Total CV% (pooled) $$CV_{\text{inter}}\% = 100 \cdot \sqrt{e^{\frac{MSE_B + MSE_W}{2}}}$$ $$CV_{\text{total}}\% = 100 \cdot \sqrt{e^{\frac{MSE_B + MSE_W}{2}} - 1}$$ $MSE_B - MSE_W$ #### Coefficient(s) of Variation - CVs of higher design levels not available. - If only mean±SD of reference available... - Avoid 'rule of thumb' CV_{intra}=60% of CV_{total} - Don't plan a cross-over based on CV_{total} - Examples (cross-over studies) | drug, formulation | design | n | metric | CV _{intra} | CV _{inter} | CV_total | %intra/total | |--------------------|--------|----|------------------|---------------------|---------------------|------------|--------------| | methylphenidate MR | SD | 12 | AUC _t | 7.00 | 19.1 | 20.4 | 34.3 | | paroxetine MR | MD | 32 | AUC_{τ} | 25.2 | 55.1 | 62.1 | 40.6 | | lansoprazole DR | SD | 47 | C _{max} | 47.0 | 25.1 | 54.6 | 86.0 | ■ ... pilot study unavoidable #### **Hints** - Literature search for CV% - Preferably other BE studies (the bigger, the better!) - PK interaction studies (Cave: mainly in steady state! Generally lower CV than after SD. - Food studies (CV higher/lower than fasted!) - If CV_{intra} not given (quite often), a little algebra helps. All you need is the 90% geometric confidence interval and the sample size. #### Calculation of CV_{intra} from CI ■ Point estimate (*PE*) from the Confidence Limits $$PE = \sqrt{CL_{lo} \cdot CL_{hi}}$$ - Estimate the number of subjects / sequence (example 2x2 cross-over) - If total sample size (N) is an even number, assume (!) $n_1 = n_2 = \frac{1}{2}N$ - ▶ If N is an odd number, assume (!) $n_1 = \frac{1}{2}N + \frac{1}{2}$, $n_2 = \frac{1}{2}N \frac{1}{2}$ (not $n_1 = n_2 = \frac{1}{2}N$!) - Difference between one *CL* and the *PE* in log-scale; use the *CL* which is given with more significant digits $$\Delta_{CL} = \ln PE - \ln CL_{lo}$$ or $\Delta_{CL} = \ln CL_{hi} - \ln PE$ - Calculation of CV_{intra} from CI (cont'd) - Calculate the Mean Square Error (MSE) $$MSE = 2 \frac{\Delta_{CL}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \cdot t_{1-2 \cdot \alpha, n_1 + n_2 - 2}}}^{2}$$ ■ CV_{intra} from MSE as usual $$CV_{\text{intra}} \% = 100 \cdot \sqrt{e^{MSE} - 1}$$ life sciences - Calculation of CV_{intra} from CI (cont'd) - Example: 90% CI [0.91 1.15], N 21 $(n_1 = 11, n_2 = 10)$ $$PE = \sqrt{0.91 \cdot 1.15} = 1.023$$ $$\Delta_{CI} = \ln 1.15 - \ln 1.023 = 0.11702$$ $$MSE = 2 \left[\frac{0.11702}{\sqrt{\left(\frac{1}{11} + \frac{1}{10}\right) \times 1.729}} \right]^{2} = 0.04798$$ $$CV_{\text{intra}}\% = 100 \times \sqrt{e^{0.04798} - 1} = 22.2\%$$ #### Proof: CI from calculated values **Example:** 90% CI [0.91 – 1.15], N 21 ($n_1 = 11$, $n_2 = 10$) $$\ln PE = \ln \sqrt{CL_{lo} \cdot CL_{hi}} = \ln \sqrt{0.91 \times 1.15} = 0.02274$$ $$SE_{\Delta} = \sqrt{\frac{2 \cdot MSE}{N}} = \sqrt{\frac{2 \times 0.04798}{21}} = 0.067598$$ $$CI = e^{\ln PE \pm t \cdot SE_{\Delta}} = e^{0.02274 \pm 1.729 \times 0.067598}$$ $$CI_{lo} = e^{0.02274 - 1.729 \times 0.067598} = 0.91$$ $$CI_{bi} = e^{0.02274 + 1.729 \times 0.067598} = 1.15$$ #### Sensitivity to Imbalance - If the study was more imbalanced than assumed, the estimated CV is conservative - Example: 90% CI [0.89 1.15], N 24 (n₁ = 16, n₂ = 8, but not reported as such); CV 24.74% in the study | Balanced Sequences | n ₁ | n ₂ | CV% | | |--------------------|----------------|----------------|-------|--| | assumed | 12 | 12 | 26.29 | | | | 13 | 11 | 26.20 | | | | 14 | 10 | 25.91 | | | 0 | 15 | 9 | 25.43 | | | Sequences in study | 16 | 8 | 24.74 | | #### Literature data **Doxicycline** (37 studies from Blume/Mutschler, *Bioäquivalenz: Qualitätsbewertung wirkstoffgleicher Fertigarzneimittel*, GOVI-Verlag, Frankfurt am Main/Eschborn, 1989-1996) - Intra-subject CV from different studies can be pooled - Do not use the arithmetic mean (or the geometric mean either) of CVs. - In the parametric model of log-transformed data, additivity of variances (not of CVs!) apply. - Before pooling variances must be weighted according to the studie's sample size. - Intra-subject CV from different studies - Calculate the variance from CV $$\sigma_W^2 = \ln(CV_{\text{intra}}^2 + 1)$$ Calculate the total variance weighted by df $$\sum \sigma_W^2 df$$ Calculate the pooled CV from total variance $$CV = \sqrt{e^{\sum \sigma_W^2 df / \sum df} - 1}$$ Optionally calculate an upper $(1-\alpha)$ % confidence limit on the pooled CV (recommended α =0.25) $$CL_{CV} = \sqrt{e^{\sum \sigma_W^2 df / \chi_{1-\alpha, \sum df}^2} - 1}$$ •Example 1: $n_1=n_2$; $CV_{Study1} < CV_{Study2}$ | studies | Ν | |---------|----| | 2 | 24 | | df (total) | α | 1-α | total | CV_{pooled} | CV _{mean} | |------------|-----|----------------------------|--------|---------------|--------------------| | 20 | 0.2 | 0.8 | 1.2540 | 0.254 | 0.245 | | | | χ^2 (1- α ,df) | 14.578 | 0.300 | +17.8% | | CV _{intra} | n | seq. | df (mj) | σw | σ²w | $\sigma^2_W \times df$ | CV _{intra /} pooled | >CL _{upper} | |---------------------|----|------|---------|-------|--------|------------------------|------------------------------|----------------------| | 0.200 | 12 | 2 | 10 | 0.198 | 0.0392 | 0.3922 | 78.6% | no | | 0.300 | 12 | 2 | 10 | 0.294 | 0.0862 | 0.8618 | 117.9% | yes | •Example 2: $n_1 < n_2$; $CV_{Study1} < CV_{Study2}$ | studies | Ν | |---------|----| | 2 | 36 | | df (total) | α | 1-α | total | CV_{pooled} | CV _{mean} | |------------|-----|----------------------------|--------|---------------|--------------------| | 32 | 0.2 | 0.2 0.8 2.2881 | | 0.272 | 0.245 | | | | χ^2 (1- α ,df) | 25.148 | 0.309 | +13.4% | | CV _{intra} | n | seq. | df (mj) | σw | σ² _W | $\sigma^2_W \times df$ | CV _{intra /} pooled | >CL _{upper} | |---------------------|----|------|---------|-------|-----------------|------------------------|------------------------------|----------------------| | 0.200 | 12 | 2 | 10 | 0.198 | 0.0392 | 0.3922 | 73.5% | no | | 0.300 | 24 | 2 | 22 | 0.294 | 0.0862 | 1.8959 | 110.2% | no | •Example 3: $n_1>n_2$; $CV_{Study1} < CV_{Study2}$ | studies | Ν | | |---------|----|--| | 2 | 36 | | | df (total) | α | 1-α | total | CV_{pooled} | CV _{mean} | |------------|-----|----------------------------|--------|---------------|--------------------| | 32 | 0.2 | 0.8 | 1.7246 | 0.235 | 0.245 | | | | χ^2 (1- α ,df) | 25.148 | 0.266 | +13.2% | | CV _{intra} | n | seq. | df (mj) | σ_{W} | σ² _W | $\sigma^2_W \times df$ | CV _{intra /} pooled | >CL _{upper} | |---------------------|----|------|---------|--------------|-----------------|------------------------|------------------------------|----------------------| | 0.200 | 24 | 2 | 22 | 0.198 | 0.0392 | 0.8629 | 85.0% | no | | 0.300 | 12 | 2 | 10 | 0.294 | 0.0862 | 0.8618 | 127.5% | yes | ## α - vs. β -Error - •α-Error (aka error type I): patient's risk to be treated with a bioinequivalent formulation - Reminder: BA in a particular patient can be either below 80% or above 125%. - If we keep the risk of particular patients at 0.05 (5%), the risk of entire the population of patients (<80% and >125%) is $2\times\alpha$ (10%) That's where the 90% confidence interval comes from (CI = $1 2\times\alpha = 0.90$) - Although α is generally set to 0.05, sometimes <0.05 (e.g., NTDIs in Brazil, multiplicity, interim analyses). ## α - vs. β -Error - β-Error (aka error type II): producer's risk to get no approval for a bioequivalent formulation - Generally *set* in study planning to ≤ 0.2 , where power = $1 \beta = \geq 80\%$ - ■No guidelines about power ('appropriate'), but - ■70% only in exceptional cases - >90% may raise questions from the Ethics Committee (suspection of 'forced bioequivalence') - There is no a posteriori (aka post hoc) power! Either a study has shown BE or not. Phoenix'/WinNonlin's output is statistical nonsense! #### **Power Curves** Power to show BE with 12 - 36 subjects for $CV_{intra} = 20\%$ n 24 \rightarrow 16: power 0.896 \rightarrow 0.735 μ_T/μ_R 1.05 \rightarrow 1.10: power 0.903 \rightarrow 0.700 #### Power vs. Sample Size - It is not possible to directly calculate the needed sample size. - Power is calculated instead, and the lowest sample size which fulfills the minimum target power is used. - Example: α 0.05, target power 80% (β =0.2), T/R 0.95, CV_{intra} 20% \rightarrow minimum sample size 19 (power 81%), rounded *up* to the next even number in a 2×2 study (power 83%). | n | power | |----|--------| | | 73.54% | | | 76.51% | | | 79.12% | | | 81.43% | | | | | 20 | 83.47% | ### Power vs. Sample Size 2×2 cross-over, T/R 0.95, 80%-125%, target power 80% #### **Tools** - Sample Size Tables (Phillips, Diletti, Hauschke, Chow, Julious, ...) - Approximations (Diletti, Chow, Julious, ...) - General purpose (SAS, R, S+, StaTable, ...) - Specialized Software (nQuery Advisor, PASS, FARTSSIE, StudySize, ...) - Exact method (Owen implemented in Rpackage PowerTOST) ### Background - Reminder: Sample Size is not directly obtained; only power - Solution given by DB Owen (1965) as a difference of two bivariate noncentral tdistributions - Definite integrals cannot be solved in closed form - "Exact' methods rely on numerical methods (currently the most advanced is AS 243 of RV Lenth; implemented in R, FARTSSIE, EFG). nQuery uses an earlier version (AS 184). ## Background - Power calculations... - "Brute force' methods (also called 'resampling' or 'Monte Carlo') converge asymptotically to the true power; need a good random number generator (*e.g.*, Mersenne Twister) and may be time-consuming - 'Asymptotic' methods use large sample approximations - Approximations provide algorithms which should converge to the desired power based on the t-distribution # Comparison | | 10/ | | |---|-------|--| | U | V 7/0 | | | original values | Method | Algorithm | 5. | 7.5 | 10. | 12. | 12.5 | 14. | 15. | 16. | 17.5 | 18. | 20. | 22. | |--------------------------|-------------|-----------|----|-----|-----|-----|------|-----|-----|-----|------|-----|-----|-----| | PowerTOST 0.5 (2010) | exact | Owen's Q | 4 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | Patterson & Jones (2006) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | Diletti et al. (1991) | noncentr. t | ? | 4 | 5 | 7 | NA | 9 | NA | 12 | NA | 15 | NA | 19 | NA | | nQuery Advisor 7 (2007) | noncentr. t | AS 184 | 4 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | FARTSSIE 1.6 (2008) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | EFG 2.01 (2009) | noncentr. t | AS 243 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | EFG 2:01 (2009) | brute force | ElMaestro | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | StudySize 2.0.1 (2006) | central t | ? | NA | 5 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 19 | 22 | | Hauschke et al. (1992) | approx. t | | NA | NA | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 16 | 20 | 22 | | Chow & Wang (2001) | approx. t | | NA | 6 | 6 | 8 | 8 | 10 | 12 | 12 | 14 | 16 | 18 | 22 | | Kieser & Hauschke (1999) | approx. t | | 2 | NA | 6 | 8 | NA | 10 | 12 | 14 | NA | 16 | 20 | 24 | #### CV% | original values | Method | Algorithm | 22.5 | 24. | 25. | 26. | 27.5 | 28. | 30. | 32. | 34. | 36. | 38. | 40. | |--------------------------|-------------|-----------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----| | PowerTOST 0.5 (2010) | exact | Owen's Q | 24 | 26 | 28 | 30 | 34 | 34 | 40 | 44 | 50 | 54 | 60 | 66 | | Patterson & Jones (2006) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | Diletti et al. (1991) | noncentr. t | ? | 23 | NA | 28 | NA | 33 | NA | 39 | NA | NA | NA | NA | NA | | nQuery Advisor 7 (2007) | noncentr. t | AS 184 | 24 | 26 | 28 | 30 | 34 | 34 | 40 | 44 | 50 | 54 | 60 | 66 | | FARTSSIE 1.6 (2008) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | EFG 2.01 (2009) | noncentr. t | AS 243 | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | Li G 2.01 (2009) | brute force | ElMaestro | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | StudySize 2.0.1 (2006) | central t | ? | 23 | 26 | 28 | 30 | 33 | 34 | 39 | 44 | 49 | 54 | 60 | 66 | | Hauschke et al. (1992) | approx. t | | 24 | 26 | 28 | 30 | 34 | 36 | 40 | 46 | 50 | 56 | 64 | 70 | | Chow & Wang (2001) | approx. t | | 24 | 26 | 28 | 30 | 34 | 34 | 38 | 44 | 50 | 56 | 62 | 68 | | Kieser & Hauschke (1999) | approx. t | | NA | 28 | 30 | 32 | NA | 38 | 42 | 48 | 54 | 60 | 66 | 74 | # **Approximations** Hauschke et al. (1992) ``` Patient's risk \alpha 0.05, Power 80% (Producer's risk \beta 0.2), AR [0.80 - 1.25], CV 0.2 (20%), T/R 0.95 1. \Delta = \ln(0.8) - \ln(T/R) = -0.1719 2. Start with e.g. n=8/sequence 1. df = n \cdot 2 - 1 = 8 \times 2 - 1 = 14 2. t_{\alpha,df} = 1.7613 3. t_{B,df} = 0.8681 4. new n = [(t_{\alpha,df} + t_{\beta,df})^2 \cdot (CV/\Delta)]^2 = (1.7613+0.8681)^2 \times (-0.2/0.1719)^2 = 9.3580 3. Continue with n=9.3580/sequence (N=18.716 \rightarrow 19) 1. df = 16.716; roundup to the next integer 17 2. t_{g,df} = 1.7396 3. t_{8,df} = 0.8633 4. new n = [(t_{\alpha,df} + t_{\beta,df})^2 \cdot (CV/\Delta)]^2 = (1.7396+0.8633)^2 \times (-0.2/0.1719)^2 = 9.1711 4. Continue with n=9.1711/sequence (N=18.3422 \rightarrow 19) 1. df = 17.342; roundup to the next integer 18 2. t_{g,df} = 1.7341 3. t_{B,df} = 0.8620 4. new n = [(t_{\alpha,df} + t_{\beta,df})^2 \cdot (CV/\Delta)]^2 = ``` S-C Chow and H Wang (2001) ``` Patient's risk \alpha 0.05, Power 80% (Producer's risk \beta 0.2), AR [0.80 - 1.25], CV 0.2 (20%), T/R 0.95 1. \Delta = \ln(T/R) - \ln(1.25) = 0.1719 2. Start with e.g. n=8/sequence 1. df_{\alpha} = roundup(2 \cdot n-2) \cdot 2-2 = (2 \times 8-2) \times 2-2 = 26 2. df_8 = roundup(4 \cdot n-2) = 4 \times 8 - 2 = 30 3. t_{\alpha,df} = 1.7056 4. t_{B/2,df} = 0.8538 5. new n = \beta^2 \cdot [(t_{\alpha,df} + t_{\beta/2,df})^2/\Delta^2 = 0.2^2 \times (1.7056+0.8538)^2 / 0.1719^2 = 8.8723 3. Continue with n=8.8723/sequence (N=17.7446 \rightarrow 18) 1. df_{\alpha} = roundup(2 \cdot n-2) \cdot 2-2=(2 \times 8.8723-2) \times 2-2 = 30 2. df_8 = roundup(4 \cdot n-2) = 4 \times 8.8723 - 2 = 34 3. t_{\alpha,df} = 1.6973 4. t_{\beta/2,df} = 0.8523 5. new n = \beta^2 \cdot [(t_{\alpha,df} + t_{\beta/2,df})^2/\Delta^2 = 0.2^2 \times (1.6973 + 0.8538)^2 / 0.1719^2 = 8.8045 4. Convergence reached (N=17.6090 \rightarrow 18): ``` | sample size | 18 | 19 | 20 | |-------------|--------|--------|--------| | power % | 79.124 | 81.428 | 83.468 | Use 9 subjects/sequence (18 total) $(1.7341+0.8620)^2 \times (-0.2/0.1719)^2 = 9.1233$ 5. Convergence reached (N=18.2466 → 19): Use 10 subjects/sequence (20 total) #### **Approximations obsolete** - Exact sample size tables still useful in checking the plausibility of software's results - Approximations based on noncentral t (FARTSSIE17) http://individual.utoronto.ca/ddubins/FARTSSIE17.xls or $$\P$$ / S+ \rightarrow Exact method (Owen) in R-package *PowerTOST* ``` http://cran.r-project.org/web/packages/PowerTOST/ require(PowerTOST) sampleN.TOST(alpha = 0.05, targetpower = 0.80, logscale = TRUE, theta1 = 0.80, diff = 0.95, CV = 0.30, design = "2x2", exact = TRUE) ``` ``` <- 0.05 alpha <- 0.30 # intra-subject CV CV <- 0.80 # lower acceptance limit theta1 theta2 <- 1/theta1 # upper acceptance limit # expected ratio T/R ratio <- 0.95 PwrNeed <- 0.80 # minimum power <- 1000 # Upper Limit for Search Limit # start value of sample size search <- 4 <- sqrt(2)*sqrt(log(CV\2+1)) repeat{ \leftarrow qt(1-alpha,n-2) <- sqrt(n)*(log(ratio)-log(theta1))/s nc1 <- sqrt(n)*(log(ratio)-log(theta2))/s prob1 \leftarrow pt(+t,n-2,nc1); prob2 \leftarrow pt(-t,n-2,nc2) power <- prob2-prob1</pre> # increment sample size if(power >= PwrNeed | (n-2) >= Limit) break } if(Total == Limit){ cat("Search stopped at Limit", Limit, obtained Power", power*100, "%\n") cat("Sample Size", Total, "(Power", power*100, "%)\n") ``` - EU GL on BE (2010) - The regulatory switching condition θ_s is derived from the regulatory standardized variation σ_o . For $CV_{WR} = 30\%$ one gets $$\sigma_0 = \sqrt{\ln(0.3^2 + 1)} = 0.2936$$ and $$\theta_s = \frac{\ln(1.25)}{\sigma_0} = -\frac{\ln(0.80)}{\sigma_0} = 0.7601$$ Tothfalusi et al. (2009) - EU GL on BE (2010) - Average Bioequivalence (ABE) with Expanding Limits (ABEL) - If you have σ_{WR} (the intra-subject standard deviation of the reference formulation) go to the next step; if not, calculate it from CV_{WR}: $$\sigma_{WR} = \sqrt{\ln(CV_{WR}^2 + 1)}$$ Calculate the scaled acceptance range based on the regulatory constant k (θ_s =0.7601): $$[U,L] = e^{\pm k \cdot \sigma_{WR}}$$ - EU GL on BE (2010) - Scaling allowed for C_{max} only (not AUC!) based on CV_{WR} >30% in the actual study (no reference to previous studies). - Limited to a maximum of CV_{WR} 50% (*i.e.*, higher CVs are treated as if CV = 50%). - ■GMR restricted with 80.00% 125.00% in any case. - At higher CVs only the GMR is of importance! - No commercial software for sample size estimation can handle the GMR restriction. - Expect a solution from the community soon... •EU GL on BE (2010) | CV% | L% | U% | |-----|-------|--------| | 30 | 80.00 | 125.00 | | 32 | 78.87 | 126.79 | | 34 | 77.77 | 128.58 | | 36 | 76.69 | 130.39 | | 38 | 75.64 | 132.20 | | 40 | 74.61 | 134.02 | | 42 | 73.61 | 135.85 | | 44 | 72.63 | 137.68 | | 46 | 71.68 | 139.52 | | 48 | 70.74 | 141.36 | | 50 | 69.83 | 143.20 | #### **EU SABE** Totfalushi *et al.* (2009), Fig. 3 Simulated (n=10000) three-period replicate design studies (TRT-RTR) in 36 subjects; GMR restriction 0.80–1.25. (a) CV=35%, (b) CV=45%, (c) CV=55%. ABE: Conventional Average Bioequivalence, SABE: Scaled Average Bioequivalence, 0.76: EU criterion, 0.89: FDA criterion. #### informa #### HVDs/HVDPs - Replicate designs - 4-period replicate designs: sample size = ½ of 2x2 study's sample size - 3-period replicate designs:sample size = ¾ of 2x2 study's sample size - Reminder: number of treatments (and biosamples) identical to the conventional 2×2 cross-over. - Allow for a safety margin expect a higher number of drop-outs due to the additional period(s). - Consider increased blood loss (ethics!) Eventually bioanalytics has to be improved. ### **Example ABEL** #### •RTR–TRT Replicate Design, n=18 | Subj | Seq | Per | Trt | Cmax | | |------|-----|-----|-----|--------|--| | 1 | 1 | 1 | R | 209.91 | | | 1 | 1 | 2 | Т | 111.05 | | | 1 | 1 | 3 | R | 116.36 | | | 2 | 1 | 1 | R | 101.16 | | | 2 | 1 | 2 | Т | 100.31 | | | 2 | 1 | 3 | R | 31.71 | | | 3 | 1 | 1 | R | 14.83 | | | 3 | 1 | 2 | Т | 57.10 | | | 3 | 1 | 3 | R | 21.47 | | | 4 | 1 | 1 | R | 118.71 | | | 4 | 1 | 2 | Т | 37.34 | | | 4 | 1 | 3 | R | 52.29 | | | 5 | 1 | 1 | R | 36.11 | | | 5 | 1 | 2 | Т | 83.95 | | | 5 | 1 | 3 | R | 17.76 | | | 6 | 1 | 1 | R | 146.44 | | | 6 | 1 | 2 | Т | 40.45 | | | 6 | 1 | 3 | R | 38.34 | | | Subj | Seq | Per | Trt | Cmax | |------|-----|-----|-----|--------| | 7 | 1 | 1 | R | 58.49 | | 7 | 1 | 2 | Т | 62.80 | | 7 | 1 | 3 | R | 123.23 | | 8 | 1 | 1 | R | 105.34 | | 8 | 1 | 2 | Т | 103.32 | | 8 | 1 | 3 | R | 43.67 | | 9 | 1 | 1 | R | 59.73 | | 9 | 1 | 2 | Т | 169.03 | | 9 | 1 | 3 | R | 48.26 | | 10 | 1 | 1 | R | 38.34 | | 10 | 1 | 2 | Т | 31.19 | | 10 | 1 | 3 | R | 19.43 | | 11 | 2 | 1 | Т | 51.95 | | 11 | 2 | 2 | R | 195.71 | | 11 | 2 | 3 | Т | 65.87 | | 12 | 2 | 1 | Т | 18.72 | | 12 | 2 | 2 | R | 20.63 | | 12 | 2 | 3 | Т | 7.45 | | Subj | Seq | Per | Trt | Cmax | |------|-----|-----|-----|--------| | 13 | 2 | 1 | Т | 92.76 | | 13 | 2 | 2 | R | 59.54 | | 13 | 2 | 3 | Т | 56.84 | | 14 | 2 | 1 | Т | 159.20 | | 14 | 2 | 2 | R | 155.50 | | 14 | 2 | 3 | Т | 165.31 | | 15 | 2 | 1 | Т | 162.41 | | 15 | 2 | 2 | R | 47.31 | | 15 | 2 | 3 | Т | 88.23 | | 16 | 2 | 1 | Т | 19.44 | | 16 | 2 | 2 | R | 42.80 | | 16 | 2 | 3 | Т | 18.93 | | 17 | 2 | 1 | Т | 90.58 | | 17 | 2 | 2 | R | 42.39 | | 17 | 2 | 3 | Т | 54.57 | | 18 | 2 | 1 | Т | 42.96 | | 18 | 2 | 2 | R | 171.86 | | 18 | 2 | 3 | Т | 59.15 | ### **Example ABEL** $\bullet \sigma_{WR}$ (WinNonlin) Calculate the scaled acceptance range based on the regulatory constant k (0.7601) and the limiting CV_{WR} : $$[U,L] = e^{\pm k \cdot \sigma_{WR}}$$ $CV_{WR} = \sqrt{\exp(\sigma_{WR}^2 - 1)}$ $30\% < CV_{WR} < 50\%$: Use calculated limits. #### **Example ABEL** ABE PE: 99.89 90% CI: 72.04, 138.52 fails ABE fails 75 – 133 30<CV_{WR}<50 [L,U] 71.54, 139.77 passes ABEL Bioequivalence Text - [Untitled4] (Read-only) (Derived) Bioequivalence Statistics User-Specified Confidence Level for CI's and Power = 90.0000 Percent of Reference to Detect for 2-1 Tests and Power = 20.0% A.H.Lower = 0.800 A.H.Upper = 1.250Formulation variable: Trt Reference: R LSMean= 4.069159 SE= 0.173739 GeoLSM= 58.507730 Test: LSMean= 4.068098 SE= 0.174718 GeoLSM= 58.445673 Difference = -0.0011, Diff SE= 0.1876, df= 16.5 Ratio(%Ref) = 99.8939 Classical Westlake 77.7639, 128.3217) (75.1692, 124.8308) CI 80% = (72.0378, 138.5217) (67.3124, 132.6876) CI 95% = (67.1817, 148.5344) (59.4138, 140.5862) Failed to show average bioequivalence for confidence=90.00 and percent=20.0. Two One-Sided T-tests Prob(< 80%)=0.1266 Prob(> 125%)=0.1244 Max=0.1266 Total=0.2510 Read Only Line 187 / 189 (90% CI within [L,U], PE within 80.00 – 125.00) ### **Sensitivity Analysis** #### ICH E9 - Section 3.5 Sample Size, paragraph 3 - The method by which the sample size is calculated should be given in the protocol [...]. The basis of these estimates should also be given. - It is important to investigate the sensitivity of the sample size estimate to a variety of deviations from these assumptions and this may be facilitated by providing a range of sample sizes appropriate for a reasonable range of deviations from assumptions. - In confirmatory trials, assumptions should normally be based on published data or on the results of earlier trials. # **Sensitivity Analysis** Example nQuery Advisor: $\sigma_{w} = \sqrt{\ln(CV_{\text{intra}}^2 + 1)}; \sqrt{\ln(0.2^2 + 1)} = 0.198042$ power $90\% \rightarrow 70\%$ informa n = 26 # **Sensitivity Analysis** - Must be done before the study (a priori) - •(The Myth of) a posteriori Power... - High values do not support the claim of already demonstrated bioequivalence - Low values do not invalidate a bioequivalent formulation - Further reader: RV Lenth (2000) JM Hoenig and DM Heisey (2001) 'Power: That which statisticians are always calculating but never have.' Stephen Senn, Statistical Issues in Drug Development Wiley, Chichester, p 197 (2nd ed. 2007) - Most common to assess CV and PE needed in sample size estimation for a pivotal BE study - To select between candidate test formulations compared to one reference - To find a suitable reference - If design issues (clinical performance, bioanalytics) are already known, a two-stage sequential design would be a better alternative! - Good Scientific Practice! - Every influental factor can be tested in a pilot study. - Sampling schedule: matching C_{max} , lag-time (first point C_{max} problem), reliable estimate of λ_z - Bioanalytical method: LLOQ, ULOQ, linear range, metabolite interferences, ICSR - Food, posture,... - Variabilty of PK metrics - Location of PE - Best description by FDA (2003) - The study can be used to validate analytical methodology, assess variability, optimize sample collection time intervals, and provide other information. For example, for conventional immediate-release products, careful timing of initial samples may avoid a subsequent finding in a full-scale study that the first sample collection occurs after the plasma concentration peak. For modified-release products, a pilot study can help determine the sampling schedule to assess lag time and dose dumping. •Estimated CV has a high degree of uncertainty (in the pivotal study it is more likely that you will be able to reproduce the PE, than the CV) - The smaller the size of the pilot, the more uncertain the outcome. - The more formulations you have tested, lesser degrees of freedom will result in worse estimates. - Remember: CV is an estimate not carved in stone! #### Pilot Studies: Sample Size - Small pilot studies (sample size <12) - Are useful in checking the sampling schedule and - the appropriateness of the analytical method, but - are not suitable for the purpose of sample size planning! - Sample sizes (T/R 0.95, power ≥80%) based on a n=10 pilot study ``` require(PowerTOST) expsampleN.TOST(alpha = 0.05, targetpower = 0.80, theta1 = 0.80, theta2 = 1.25, diff = 0.95, CV = 0.40, dfCV = 22, alpha2 = 0.05, design = "2x2") ``` | CV% | fixed CV | uncertain CV | ratio | |-----|----------|--------------|-------| | 20 | 20 | 24 | 1.200 | | 25 | 28 | 36 | 1.286 | | 30 | 40 | 52 | 1.300 | | 35 | 52 | 68 | 1.308 | | 40 | 66 | 86 | 1.303 | If pilot n=24: n=72, ratio 1.091 #### Pilot Studies: Sample Size - Moderate sized pilot studies (sample size ~12–24) lead to more consistent results (both CV and PE). - If you stated a procedure in your protocol, even BE may be claimed in the pilot study, and no further study will be necessary (US-FDA). - If you have some previous hints of high intrasubject variability (>30%), a pilot study size of at least 24 subjects is reasonable. - A Sequential Design may also avoid an unnecessary large pivotal study. #### Pilot Studies: Sample Size - Do not use the pilot study's CV, but calculate an upper confidence interval! - Gould (1995) recommends a 75% CI (*i.e.*, a producer's risk of 25%). - Apply Bayesian Methods (Julious and Owen 2006, Julious 2010). - Unless you are under time pressure, a Two-Stage Sequential Design will help in dealing with the uncertain estimate from the pilot study. # **Sequential Designs** - have a long and accepted tradition in later phases of clinical research (mainly Phase III). - Based on work by Armitage *et al.* (1969), McPherson (1974), Pocock (1977), O'Brien and Fleming (1979) and others. - First proposal by LA Gould (1995) in the area of BE did not get regulatory acceptance in Europe, but - stated in the current Canadian Draft Guidance (November 2009). - Two-Stage Design acceptable in the EU (BE GL 2010, Section 4.1.8) # **Sequential Designs** - Penalty for the interim analysis (94.12% vs. 90% CI) - Moderate increase in sample sizes - Example: T/R 95%, power 80% - ~10% increase (sim's by Gould 1995) - -Comparison to a fixed sample design is based on a delusion assuming a 'known' CV! | On the long run (r | many studies) | sequential | designs | |--------------------|---------------|------------|---------| | will need less sub | jects. | | | | CV% | 90% CI | 94.12% CI | ratio | |-----|--------|-----------|-------| | 10 | 8 | 8 | 1.000 | | 15 | 12 | 14 | 1.167 | | 20 | 20 | 24 | 1.200 | | 25 | 28 | 34 | 1.214 | | 30 | 40 | 48 | 1.200 | EMA GL on BE (2010) 'Internal Pilot Study Design' - Section 4.1.8 - Initial group of subjects treated and data analysed. - If BE not been demonstrated an additional group can be recruited and the results from both groups combined in a final analysis. - Appropriate steps to preserve the overall type I error (patient's risk). - Stopping criteria should be defined a priori. - First stage data should be treated as an interim analysis. - EMA GL on BE (2010) - Section 4.1.8 (cont'd) - Both analyses conducted at adjusted significance levels (with the confidence intervals accordingly using an adjusted coverage probability which will be higher than 90%). [...] 94.12% confidence intervals for both the analysis of stage 1 and the combined data from stage 1 and stage 2 would be acceptable, but there are many acceptable alternatives and the choice of how much alpha to spend at the interim analysis is at the company's discretion. - EMA GL on BE (2010) - Section 4.1.8 (cont'd) - Plan to use a two-stage approach must be prespecified in the protocol along with the adjusted significance levels to be used for each of the analyses. - When analysing the combined data from the two stages, a term for stage should be included in the ANOVA model. - Method by Potvin et al. (2007) promising - Supported by 'The Product Quality Research Institute' (members: FDA-CDER, Health Canada, USP, AAPS, PhRMA,...) - Likely to be implemented by US-FDA - Should be acceptable as a Two-Stage Design in the EU - Two of BEBAC's protocols approved by BfArM and competent EC in May and December 2009 Method 'C' Evaluate power at Stage 1 using α -level of 0.050 If power <80%, evaluate BE at Stage 1 (α = 0.0294) If BE not met, calculate sample size based on Stage 1 and α = 0.0294, continue to Stage 2 Evaluate BE at Stage 2 using data from both Stages $(\alpha = 0.0294)$ and stop Pass or fail - Technical Aspects - Only one Interim Analysis (after Stage 1) - If possible, use software (too wide step sizes in Diletti's tables) - Should be called 'Interim Power Analysis'; *not* 'Bioequivalence Assessment' in the protocol - No a-posteriori Power only a validated method in the decision tree - No adjustment for the PE observed in Stage 1 - No stop criterion for Stage 2! Must be clearly stated in the protocol (may be unfamiliar to the IEC, because standard in Phase III). - Technical Aspects (cont'd) - Adjusted α of 0.0294 based on Pocock 1977 - In the pooled analysis (data from Stages 1 + 2), α 0.0294 is used (*i.e.*, the 94.12% Confidence Interval is calculated) Overall patient's risk is ≤0.0500 - Technical Aspects (cont'd) - If the study is stopped after Stage 1, the (conventional) statistical model is: fixed: treatment+period+sequence random: subject(sequence) If the study continues to Stage 2, the model for the combined analysis is: fixed: treatment+period+sequence+stage×treatment random: subject(sequence×stage) No poolability criterion; combining is always allowed – even for significant differences between Stages. - Advantage - Currently the only validated procedure for BE! - Drawbacks - Not validated for a correction of effect size (PE) observed in Stage 1 (must continue with the one used in sample size planing). - No stop criterion (EMA GL on BE?) - Not validated for any other design than the conventional 2x2 crossover (no higher order cross-overs, no replicate designs). # Thank You! Sample Size Challenges in BE Studies Open Questions? (References in your handouts) #### Helmut Schütz BEBAC Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at life sciences ### The Myth of Power There is simple intuition behind results like these: If my car made it to the top of the hill, then it is powerful enough to climb that hill; if it didn't, then it obviously isn't powerful enough. Retrospective power is an obvious answer to a rather uninteresting question. A more meaningful question is to ask whether the car is powerful enough to climb a particular hill never climbed before; or whether a different car can climb that new hill. Such questions are prospective, not retrospective. The fact that retrospective power adds no new information is harmless in its own right. However, in typical practice, it is used to exaggerate the validity of a significant result ("not only is it significant, but the test is really powerful!"), or to make excuses for a nonsignificant one ("well, P is .38, but that's only because the test isn't very powerful"). The latter case is like blaming the messenger. #### **RV** Lenth Two Sample-Size Practices that I don't recommend http://www.math.uiowa.edu/~rlenth/Power/2badHabits.pdf #### References - Collection of links to global documents <u>http://bebac.at/Guidelines.htm</u> - •ICH - E9: Statistical Principles for Clinical Trials (1998) - EMA-CPMP/CHMP/EWP - NfG on the Investigation of BA/BE (2001) - Points to Consider on Multiplicity Issues in Clinical Trials (2002) - BA/BE for HVDs/HVDPs: Concept Paper (2006); removed form EMEA's website in Oct 2007. Available at http://bebac.at/downloads/14723106en.pdf - Questions & Answers on the BA and BE Guideline (2006) - Draft Guideline on the Investigation of BE (2008) - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2009) - Guideline on the Investigation of BE (2010) - •US-FDA - Center for Drug Evaluation and Research (CDER) - Statistical Approaches Establishing Bioequivalence (2001) - Bioequivalence Recommendations for Specific Products (2007) - Midha KK, Ormsby ED, Hubbard JW, McKay G, Hawes EM, Gavalas L, and IJ McGilveray Logarithmic Transformation in Bioequivalence: Application with Two Formulations of Perphenazine J Pharm Sci 82/2, 138-144 (1993) - Hauschke D, Steinijans VW, and E Diletti Presentation of the intrasubject coefficient of variation for sample size planning in bioequivalence studies Int J Clin Pharmacol Ther 32/7, 376-378 (1994) - Diletti E, Hauschke D, and VW Steinijans Sample size determination for bioequivalence assessment by means of confidence intervals Int J Clin Pharm Ther Toxicol 29/1, 1-8 (1991) - Hauschke D, Steinijans VW, Diletti E, and M Burke Sample Size Determination for Bioequivalence Assessment Using a Multiplicative Model J Pharmacokin Biopharm 20/5, 557-561 (1992) - S-C Chow and H Wang On Sample Size Calculation in Bioequivalence Trials J Pharmacokin Pharmacodyn 28/2, 155-169 (2001) Errata: J Pharmacokin Pharmacodyn 29/2, 101-102 (2002) - DB Owen A special case of a bivariate non-central t-distribution Biometrika 52, 3/4, 437-446 (1965) life sciences #### References - Tothfalusi L, Endrenyi L, and A Garcia Arieta Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence Clin Pharmacokinet 48/11, 725-743 (2009) - RV Lenth Two Sample-Size Practices that I don't recommend Joint Statistical Meetings, Indianapolis (2000) http://www.math.uiowa.edu/~rlenth/Power/2badHabits.pdf - JM Hoenig and DM Heisey The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis The American Statistician 55/1, 19–24 (2001) http://www.math.uiowa.edu/~rlenth/Power/2badHabits.pdf - P Bacchetti Current sample size conventions: Flaws, harms, and alternatives BMC Medicine 8:17 (2010) http://www.biomedcentral.com/content/pdf/1741-7015-8-17.pdf - B Jones and MG Kenward Design and Analysis of Cross-Over Trials Chapman & Hall/CRC, Boca Raton (2nd Edition 2000) - S Patterson and B Jones Bioequivalence and Statistics in Clinical Pharmacology Chapman & Hall/CRC, Boca Raton (2006) - SA Julious Tutorial in Biostatistics. Sample sizes for clinical trials with Normal data Statistics in Medicine 23/12, 1921-1986 (2004) - SA Julious and RJ Owen Sample size calculations for clinical studies allowing for uncertainty about the variance Pharmaceutical Statistics 5/1, 29-37 (2006) - SA Julious Sample Sizes for Clinical Trials Chapman & Hall/CRC, Boca Raton (2010) - LA Gould Group Sequential Extension of a Standard Bioequivalence Testing Procedure J Pharmacokin Biopharm 23/1, 57-86 (1995) - Potvin D, Diliberti CE, Hauck WW, Parr AF, Schuirmann DJ, and RA Smith Sequential design approaches for bioequivalence studies with crossover designs Pharmaceut Statist (2007), DOI: 10.1002/pst.294 http://www3.interscience.wiley.com/cgibin/abstract/115805765/ABSTRACT