Reference-Scaled Average Bioequivalence (NTIDs)

Biostatistics
Reference-Scaled Average Bioequivalence (Part II: NTIDs)

Helmut Schütz
BEBAC

Low variability

Conventional concept of BE:

Two formulations with a large difference in means are declared bioequivalent if variances are low.

Modified from Fig. 1 Tothfálsúi et al. (2009)
NTIDs might be problematic

steep/flat PK/PD-curves

respond. × 2

centr. × 2

response × 20

centr. × 2
NTIDs (FDA)

- NTIDs from ANDAs reviewed by FDA/OGD within 1996 – 2008 (89 studies)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Studies</th>
<th>AUC_{0-t}</th>
<th>C_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>29</td>
<td>5.7</td>
<td>12.7</td>
</tr>
<tr>
<td>Levothyroxine</td>
<td>9</td>
<td>9.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>15</td>
<td>8.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Lithium carbonate</td>
<td>16</td>
<td>7.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Digoxin</td>
<td>5</td>
<td>21.7</td>
<td>21.0</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>12</td>
<td>9.2</td>
<td>14.9</td>
</tr>
<tr>
<td>Theophylline</td>
<td>3</td>
<td>17.9</td>
<td>18.2</td>
</tr>
</tbody>
</table>

LX Yu
Approaches to Demonstrate Bioequivalence Critical Dose Drugs
Advisory Committee for Pharmaceutical Science and Clinical Pharmacology, April 13, 2010
NTID\(\text{s (FDA)}\)

- For NTIDs 20\% fluctuation in plasma concentrations might be clinically relevant.
- NTIDs often have low variability; CIs of two generics might be 85–90\% and 115–120\%.

Switchability? Potential Approaches:

- AUC: PE \(\subset 90–111\%\)
- AUC: PE \(\subset 95–105\%\)
- AUC: CI \(\subset 90–111\%\) (like EMA)
- AUC: CI \(\subset 90–111\%\) and includes 100\% (like Denmark)
- AUC: CI \(\subset 95–105\%\)
- Reference Scaled Average Bioequivalence (RSABE)
NTIDs (FDA)

- Percentage of ANDAs passing tighter criteria (89 studies)

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC_{0-t}</th>
<th>C_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI includes 100%</td>
<td>84.3</td>
<td>69.7</td>
</tr>
<tr>
<td>CI \subset 90–111%</td>
<td>86.5</td>
<td>60.7</td>
</tr>
<tr>
<td>CI \subset 90–111% and includes 100%</td>
<td>77.5</td>
<td>50.6</td>
</tr>
<tr>
<td>PE \subset 90–111%</td>
<td>100.0</td>
<td>95.5</td>
</tr>
<tr>
<td>RSABE</td>
<td>not assessed</td>
<td></td>
</tr>
</tbody>
</table>

- Tighter AR ensures smaller differences in mean BA
- Differences in variability between products are not addressed
- RSABE suggested

Reference: Scaled Average Bioequivalence (NTIDs)
Statistical model

- Fully replicated TRTR | RTRT design
 - ABE model
 \[-\theta_A \leq \mu_T - \mu_R \leq +\theta_A\]
 - SABE model
 \[-\theta_S \leq \frac{\mu_T - \mu_R}{\sigma_W} \leq +\theta_S\]
 - Regulatory regulatory switching condition \(\theta\) based on regulatory constant \(\sigma_0\) 0.1 and \(\Delta 1.11111 (=1/0.9, \text{the upper BE limit})\)

\[\theta \equiv \left(\frac{\ln \Delta}{\sigma_0}\right)^2\]
Evaluation

- **SABE**
 - Mixed effects model (SAS Proc MIXED, Phoenix Linear Mixed Effects).
 - Determine 95% upper confidence limit for
 \[
 \left(\bar{Y}_T - \bar{Y}_R \right)^2 - \theta \cdot s_{WR}^2
 \]
 by Howe’s method (like in SABE for HVDPs).
 - Bioequivalent if 95% upper CL ≤ 0.

- **ABE**
 - Mixed effects model.
 - Bioequivalent if 90% CI ⊂ 80.00–125.00%.
Comparison of σ_{WT} with σ_{WR}

- Mixed effects model of intra-subject contrast T_1-T_2 and R_1-R_2 by sequence.

 Comparison based on s_{WT} and s_{WR} (the estimates of σ_{WT} and σ_{WR}).

 s_{WR} is already available from SABE (R_1-R_2); similar setup for T_1-T_2 to obtain s_{WT}.

- Determine 90% confidence interval of σ_{WT}/σ_{WR} as

$$\frac{s_{WT}/s_{WR}}{\sqrt{F_{\alpha/2}(\nu_1,\nu_2)}} \leq \frac{s_{WT}/s_{WR}}{\sqrt{F_{1-\alpha/2}(\nu_1,\nu_2)}}$$
Evaluation

- Comparison of σ_{WT} with σ_{WR}
 - s_{WT} is the estimate σ_{WT} with ν_1 degrees of freedom ($\nu_1 = n_1 - 2$ in the fully replicate).
 - s_{WR} is the estimate σ_{WR} with ν_2 df.
 - Probability of risk type I $\alpha = 0.1$.
 - $F_{\alpha/2(\nu_1,\nu_2)}$ is the value of the F-distribution with ν_1 (numerator) and ν_2 (denominator) degrees of freedom and a probability of $\alpha/2$.
 - $F_{1-\alpha/2(\nu_1,\nu_2)}$ is the value of the F-distribution with ν_1 and ν_2 df and a probability of $1 - \alpha/2$.
 - Bioequivalent if 95% upper CL of $\sigma_{WT}/\sigma_{WR} \leq 2.5$.
Consequences of Scaling

- At $\sigma_{WR} 0.1 \ (CV \ 10.03\%)$ the expanded AR is $90.00-111.11\%$

<table>
<thead>
<tr>
<th>CV_{WR}</th>
<th>$L - U$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>94.87 – 105.41</td>
</tr>
<tr>
<td>10</td>
<td>90.02 – 111.08</td>
</tr>
<tr>
<td>15</td>
<td>85.35 – 117.02</td>
</tr>
<tr>
<td>20</td>
<td>81.17 – 123.20</td>
</tr>
<tr>
<td>25</td>
<td>77.15 – 129.62</td>
</tr>
<tr>
<td>30</td>
<td>73.40 – 136.25</td>
</tr>
</tbody>
</table>
NTIDs (FDA)

- As a consequence of scaling the AR for $s_{WR} > 0.21179$ ($CV_{WR} > 21.42\%$) will be wider than the conventional 80.00–125.00%.

- Possible ‘ways out’
 1. Cutoff on s_{WR} and switch to conventional unscaled ABE
 2. A “Must Pass Both” criterion: RSABE + ABE
 - Both methods maintain the patient’s risk <5%.
 Method 2 slightly more conservative.
 Power essentially identical.

DJ Schuirmann
Evaluation of Scaling Approaches to Demonstrate BE of NTI Drugs – OGD Simulation Efforts
Advisory Committee for Pharmaceutical Science and Clinical Pharmacology, July 26, 2011
http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommittee
forPharmaceuticalScienceandClinicalPharmacology/UCM266777.pdf
NTIDs (FDA)

- Both methods preserve the patient’s risk

DJ Schuirmann 2011

Reference-Scaled Average Bioequivalence (NTIDs)

Example

CNS drug from BEBAC’s files

- RTRT | TRTR full replicate, 18 subjects, balanced, complete
 - FDA
 1. critbound: $-0.0098283 \leq 0$ (CV_{WR} 12.49%, CV_{WT} 5.58%)
 - ABE: 90% CI 93.90–103.35% \subset AR
 - upper 95% CL of s_{WT}/s_{WR} 0.68427 ≤ 2.5
- EMA
 - AR 90.00–111.11%
 - ABE: 90% CI 93.90–103.35% \subset AR (CV_{WR} 15.86%, CV_{WT} 5.73%)
- Data set in Excel 2000 format:
 http://bebac.at/downloads/NTID.xls
Example

Reference-Scaled Average Bioequivalence (NTIDs)

<table>
<thead>
<tr>
<th>FDA</th>
<th>EMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.00%</td>
<td>111.11%</td>
</tr>
<tr>
<td>87.72%</td>
<td>90.00%</td>
</tr>
</tbody>
</table>

Bioequivalence limits

- 80%
- 90%
- 100%
- 110%
- 120%
Thank You!

Reference-Scaled Average Bioequivalence (Part II)

Open Questions?

Helmut Schütz
BEBAC
Consultancy Services for Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at
References

- **ICH**
- **EMA-CPMP/CHMP/EWP**
 - Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics (2011, 2012)
- **US-FDA**
 - Center for Drug Evaluation and Research (CDER)
 - Statistical Approaches Establishing Bioequivalence (2001)
- **LX Yu**
 - Approaches to Demonstrate Bioequivalence Critical Dose Drugs
 - ACPSCP-Meeting, April 13, 2010

- **DJ Schuirmann**
 - Evaluation of Scaling Approaches to Demonstrate BE of NTI Drugs – OGD Simulation Efforts
 - ACPSCP-Meeting, July 26, 2011

- **Davit BM et al.**
 - Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration
 - The AAPS Journal 14/4, 915–24 (2012)
 - DOI: 10.1208/s12248-012-9406-x
SAS code (FDA)

Fully replicated 4-way design

```sas
data test1;
  set test;
  if (seq=1 and per=1) or (seq=2 and per=2);
  lat1t=lauct;
run;

data test2;
  set test;
  if (seq=1 and per=3) or (seq=2 and per=4);
  lat2t=lauct;
run;

data ref1;
  set ref;
  if (seq=1 and per=2) or (seq=2 and per=1);
  lat1r=lauct;
run;

data ref2;
  set ref;
  if (seq=1 and per=4) or (seq=2 and per=3);
  lat2r=lauct;
run;
```
SAS code (FDA)

Fully replicated 4-way design (cont’d)

```sas
data scavbe;
  merge test1 test2 ref1 ref2;
  by seq subj;
  ilat=0.5*(lat1t+lat2t-lat1r-lat2r);
  dlat=lat1r-lat2r;
run;

proc mixed data=scavbe;
  class seq;
  model ilat =seq/ddfm=satterth;
  estimate 'average' intercept 1 seq 0.5 0.5/e cl alpha=0.1;
  ods output CovParms=iout1;
  ods output Estimates=iout2;
  ods output NObs=iout3;
  title1 'scaled average BE';
  title2 'intermediate analysis - ilat, mixed';
run;

pointest=exp(estimate);
x=estimate**2-stderr**2;
boundx=(max((abs(lower)),(abs(upper))))**2;
```
SAS code (FDA)

Fully replicated 4-way design (cont’d)

```sas
proc mixed data=scavbe;
  class seq;
  model dlat=seq/ddfm=satterth;
  estimate 'average' intercept 1 seq 0.5 0.5/e cl alpha=0.1;
  ods output CovParms=dout1;
  ods output Estimates=dout2;
  ods output NObs=dout3;
  title1 'scaled average BE';
  title2 'intermediate analysis - dlat, mixed';
run;

s2wr=estimate/2;
dfd=df;

theta=((log(1.11111))/0.1)**2;
y=-theta*s2wr;
boundy=y*dfd/cinv(0.95,dfd);
sWR=sqrt(s2wr);
critbound=(x+y)+sqrt(((boundx-x)**2)+((boundy-y)**2));
```

Reference-Scaled Average Bioequivalence (NTIDs)
SAS code (FDA)

Unscaled 90% BE confidence intervals

```
PROC MIXED
   data=pk;
   CLASSES SEQ SUBJ PER TRT;
   MODEL LAUCT = SEQ PER TRT/ DDFM=SATTERTH;
   RANDOM TRT/TYPE=FAO(2) SUB=SUBJ G;
   REPEATED/GRP=TRT SUB=SUBJ;
   ESTIMATE 'T vs. R' TRT 1 -1/CL ALPHA=0.1;
   ods output Estimates=unsc1;
   title1 'unscaled BE 90% CI - guidance version'; title2 'AUCHt';
run;
```

```
data unsc1;
   set unsc1;
   unscabe_lower=exp(lower);
   unscabe_upper=exp(upper);
run;
```

RSABE if

1. critbound \(\leq 0 \) and
2. 90% CI of ABS within 0.8000 and 1.2500 and
3. 95% upper CL of \(\frac{sWT}{sWR} \) \(\leq 2.5 \).