

Group-Sequential and Two-Stage Designs

Helmut Schütz

Group-Sequential Designs

Dealing with Uncertainty: Group-Sequential Designs

- Long and accepted tradition in clinical research (phase III)
 - Based on Armitage et al. (1969), McPherson (1974), Pocock (1977),
 O'Brien/Fleming (1979), Lan/DeMets (1983), Jennison/Turnbull (1999), ...
- Fixed total sample size (N) and in BE one interim analysis
 - Requires two assumptions
 - A 'worst case' CV for the total sample size and
 - A 'realistic' CV for the interim
 - All published methods were derived for superiority testing, parallel groups, normal distributed data with known variance, and the interim analysis at exactly N/2
 - That's not what we have in BE
 - » Equivalence (generally crossover), lognormal data with unknown variance
 - » Due to drop-outs, the interim might not be exactly at N/2 (might inflate the Type I Error)

Group-Sequential Designs

Dealing with Uncertainty: Group-Sequential Designs

- Fixed total sample size (N) and in BE one interim analysis
 - First proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe
 - Asymmetric split of α is possible, *i.e.*,
 - a small α in the interim (i.e., stopping for futility) and
 - a large one in the final analysis (i.e., only small sample size penality)
 - Examples
 - Haybittle/Peto (α_1 0.001, α_2 0.049)
 - O'Brien/Fleming (α_1 0.005, α_2 0.048)
 - Not developed for crossover designs and sample size re-estimation (fixed n_1 and variable N): Lower α_2 or α -spending functions (Lan/DeMets, Jennison/Turnbull) are needed in order to control the Type I Error
 - Zheng et al. (2015) for BE in crossovers (α_1 0.01, α_2 0.04) controls the TIE

Excursion 1

Type I Error

Group-Sequential Designs

- Australia (2004), Canada (Draft 2009)
 - Application of Bonferroni's correction (α_{adi} 0.025)
 - Theoretical Type I Error ≤0.0494
 - For CVs and samples sizes common in BE the TIE generally is \leq 0.04
- Canada (2012)
 - Pocock's α_{adj} 0.0294
 - $-n_1$ based on 'most likely variance' + additional subjects in order to compensate for expected dropout-rate
 - N based on 'worst-case scenario'
 - If $n_1 \neq N/2$ relevant inflation of the Type I Error is possible!
 - α -spending functions can control the TIE
 - Are not mentioned in the guidance...

Dealing with Uncertainty: (Adaptive) Sequential Two-Stage Designs

- Fixed stage 1 sample size (n_1) , sample size re-estimation in the interim analysis
 - Generally a fixed GMR is assumed
 - All published methods are valid only for a range of combinations of stage 1 sample sizes, CVs, GMRs, and desired power
 - Fully adaptive methods (i.e., taking also the GMR of stage 1 into account) are problematic
 - May deteriorate power and require a futility criterion
 - Simulations mandatory
 - With one exception (inverse normal method) no analytical proof of controlling the TIE exists
 - It is the responsibility of the sponsor to demonstrate (e.g., by simulations)
 that the consumer risk is preserved

Dealing with Uncertainty: (Adaptive) Sequential Two-Stage Designs

- Fixed stage 1 sample size (n_1) , sample size re-estimation in the interim analysis
 - Two 'Types' (Schütz 2015)
 - 1. The same adjusted α is applied in both stages regardless whether a study stops in the first stage or proceeds to the second stage
 - 2. An unadjusted α may be used in the first stage, dependent on interim power

Type 1 and Type 2

Methods by Potvin et al. (2008) first validated framework in the context of BE

- Supported by the 'Product Quality Research Institute' (FDA/CDER, Health Canada, USP, AAPS, PhRMA, ...)
- Inspired by conventional BE testing and Pocock's α_{adj} 0.0294 for GSDs
 - A fixed *GMR* is assumed (only the *CV* in the interim is taken into account for sample size re-estimation)
 GMR in the first publication was 0.95;
 later extended to 0.90 by other authors
 - Target power 80% (later extended to 90%)

Frameworks for crossover TSDs

Stage 1 sample sizes 12 – 60, no futility rules.

Reference	Type	Method	GMR	Target power	CV_w	$lpha_{adj}$	TIE _{max}
Potvin <i>et al.</i> (2008)	1	В	0.95	80%	10 – 100%	0.0294	0.0485
	2	С					0.0510
Montague et al. (2012)	2	D	0.90			0.0280	0.0518
	1	В	0.95	90%	10 – 80%	0.0284	0.0501
Fuglsang (2013)	2	C/D				0.0274	0.0503
	2	C/D				0.0269	0.0501

• Xu et al. (2015). GMR 0.95, target power 80%, futility for the $(1-2\alpha_1)$ CI.

Type	Method	CV _w	Futility region	α_1	α_2	TIE_{max}
1	Е	10 – 30%	0.9374 - 1.0667	0.0249	0.0363	0.050
2	F		0.9492 - 1.0535	0.0248	0.0364	0.050
1	Е	30 – 55%	0.9305 - 1.0747			
2	F		0.9350 - 1.0695	0.0259	0.0349	0.050

Excursion 2

Type I Error and power

• Fixed sample $2\times2\times2$ design (α 0.05). *GMR* 0.95, *CV* 10 – 80%, *n* 12 –72

Excursion 3

Type I Error and power

• 'Type 1' TSD (Potvin Method B, α_{adj} 0.0294). *GMR* 0.95, *CV* 10 – 80%,

- EMA (Jan 2010)
 - Acceptable
 - α_{adj} 0.0294 = 94.12% CI in *both* stages given as an example (*i.e.*, Potvin Method B preferred?)
 - '... there are many acceptable alternatives and the choice of how much alpha to spend at the interim analysis is at the company's discretion.'
 - '... pre-specified ... adjusted significance levels to be used for each of the analyses.'
 - Personal remarks
 - The TIE must be preserved. Especially important if 'exotic' methods are applied.
 - Does the requirement of pre-specifying *both* alphas imply that α -spending functions or adaptive methods (where α_2 is based on the interim and/or the final sample size) are not acceptable?
 - TSDs are on the workplan of the EMA's Biostatistics Working Party for 2018...

- EMA Q&A Document Rev. 7 (Feb 2013)
 - The model for the combined analysis is (all effects fixed):

```
stage + sequence + sequence(stage) + subject(sequence × stage) +
period(stage) + formulation
```

- At least two subjects in the second stage
- Personal remarks
 - None of the publications used sequence(stage);
 no poolability criterion combining is always allowed, even if a significant difference between stages is observed
 Simulations performed by the BSWP or out of the blue sky?
 - Modification shown to be irrelevant (Karalis/Macheras 2014). Furthermore, no difference whether subjects are treated as a fixed or random term (unless PE >1.20). Requiring two subjects in the second stage is unnecessary.

```
library(Power2Stage)
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25)$pBE
[1] 0.046262
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25, min.n2=2)$pBE
[1] 0.046262
```


- Health Canada (May 2012)
 - Potvin Method C recommended
- FDA
 - Potvin Method C / Montague Method D / Xu Method E/F recommended (Davit et al. 2013; 2nd / 3rd GBHI conferences, Rockville 2016 and Amsterdam 2018)
- Russia (2013), Eurasian Economic Union (2016)
 - Acceptable; Potvin Method B preferred?

Futility Criteria

- Futility rules (for early stopping) do not inflate the TIE, but may deteriorate power
 - Stopping criteria must be unambiguously stated in the protocol
 - Simulations are mandatory in order to assess whether power is sufficient:
 Introduction of [...] futility rules may severely impact power in trials with sequential designs and under some circumstances such trials might be unethical.
 - [...] before using any of the methods [...], their operating characteristics should be evaluated for a range of values of n_1 , CV and true ratio of means that are of interest, in order to decide if the Type I error rate is controlled, the power is adequate and the potential maximum total sample size is not too great.

 Jones/Kenward 2014
 - Simulations uncomplicated with current software
 - Finding a suitable α_{adj} and validating for TIE and power takes ~20 minutes with the R-package Power2Stage (open source)

Dropouts

- In the first stage
 - Not relevant because the actual n_1 is used
- In the second stage
 - A smaller total sample size translates into
 - a lower chance to show BE and hence,
 - also a lower Type I Error
 - Like in fixed sample designs the impact on power will be small

Cost Analysis

- Consider certain questions
 - Is it possible to assume a best/worst-case scenario?
 - How large should the size of the first stage be?
 - How large is the expected average sample size in the second stage?
 - Which power can one expect in the first stage and the final analysis?
 - Will introduction of a futility criterion substantially decrease power?
 - Is there an unacceptable sample size penalty compared to a fixed sample design?

Cost Analysis

- Example:
 - Expected CV 20%, target power is 80% for a GMR of 0.95.
 Comparison of a 'Type 1' TSD with a fixed sample design (n 20, 83.5% power).

n ₁	<i>E</i> [<i>N</i>]	Studies stopped in stage 1 (%)	Studies failed in stage 1 (%)		Studies in stage 2 (%)	Final power (%)	Increase of costs (%)
12	20.6	43.6	2.3	41.3	56.4	84.2	+2.9
14	20.0	55.6	3.0	52.4	44.5	85.0	+0.2
16	20.1	65.9	3.9	61.9	34.1	85.2	+0.3
18	20.6	74.3	5.0	69.3	25.7	85.5	+3.1
20	21.7	81.2	6.3	74.9	18.8	86.2	+8.4
22	23.0	87.2	7.3	79.8	12.8	87.0	+15.0
24	24.6	91.5	7.9	83.6	8.5	88.0	+22.9

Conclusions

- Do not blindly follow guidelines!
 Some current recommendations may inflate the patient's risk and/or deteriorate power
- Published frameworks can be applied without requiring the sponsor to perform own simulations – although they could further improve power based on additional assumptions
- GSDs and TSDs are both ethical and economical alternatives to fixed sample designs
- Recently the EMA's BSWP unofficially! expressed concerns about the validity of methods based on simulations

Rumors & Chinese Whispers (Part 1)

TSDs based on simulations

- One member of the PKWP (2015):
 - I made peace with these methods and accept studies if the confidence interval is not too close to the acceptance limits.
 - Personal remark: How close is 'not too close'?
- Assessors of ES, AT (2016):
 - Kieser/Rauch (2015) showed that the adjusted α_{adj} 0.0294 used by Potvin *et al.* is Pocock's for *superiority*. The correct value for *equivalence* is 0.0304 (Jennison/Turnbull 1999).
 - Hence, all studies evaluated with a 94.12% CI in both stages are more conservative than necessary. At least these studies should not be problematic.
 - Personal remarks
 - » One could confirm ~0.0304 for 'Method B' in simulations
 - » However, it is a misconception that 0.0304 is 'universally valid' for equivalence
 - » Other settings (GMR, power) require other values even for 'Type 1' TSDs

Rumors & Chinese Whispers (Part 1)

TSDs based on simulations

- Another member of the PKWP asked the BSWP which inflation of the Type I Error would be acceptable (2015). He gave 0.0501 as an example.
 - Answer: The TIE must not exceed 0.05.
 - Personal remark: Rounding of the CI as required by the GL leads to acceptance of studies (regardless the design) with CLs of 79.995% and/or 125.004% — which inflates the TIE up to 0.0508. The BSWP should mind its own business.
- One assessor (PT) saw a study rejected by one of his colleagues although BE was shown (2016)
 - When asked why, the answer was:
 - 'According to the BSWP Potvin's methods are not acceptable.'
 - He was not aware of such a statement and asked for an official document
 - 'Such a document does not exist but all statisticians in the agencies know this statement.'

The Assessor's Dilemma

TSDs based on simulations

- If an assessor would like to accept TSDs he/she is facing a dilemma:
 - TSDs are stated in the GL and therefore, studies are submitted
 - The BSWP does not 'like' methods based on simulations and prefers methods which demonstrate by an analytical proof that the patient's risk is preserved – which seemingly don't exist
 - According to the BSWP even a TIE of 0.0501 is not acceptable
 - With one million simulations the significance limit (>0.05) is 0.05036
 - Most methods show a TIE below this limit (and many even <0.05)
 - However, with other seeds of the random number generator (slightly) different results are possible
 - It would be desirable to assess whether a passing study (with a Cl close to the AR) has a *relevant* impact on the patient's risk
- I developed an R-package (AdaptiveBE), which currently is evaluated by assessors in Portugal and Spain

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- In principle regulators prefer methods where the control of the TIE can be shown analytically
 - Promising zone approach (Mehta/Pocock 2011)
 Wrong: Superiority / parallel groups / equal variances.
 Critized by Emerson et al. (2011).
 - Inverse normal method (Kieser/Rauch 2015)
 Wrong: Not a proof but a claim. Slight inflation of the TIE (0.05026) in the supplementary material's simulations.
 - Inverse normal approach / maximum combination test demonstrated to control the Type I Error (Wassmer and Brannath 2016, Maurer et al. 2018)
 - For 2×2×2 designs implemented in the R-package Power2Stage available at https://cran.r-project.org/package=Power2Stage

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- In principle regulators prefer methods where the control of the TIE can be shown analytically
 - Repeated confidence intervals (Bretz et al. 2009)
 Adapted for BE (König et al. 2014, 2015, Maurer et al., 2018)
- Both in the inverse normal approach and with repeated CIs the final α is adapted based on the study's data
 - Is this compatible with the guideline's 'pre-specified' α ?
 - According to discussions at the 3rd GBHI conference (Amsterdam, April 2018) most likely yes!

Rumors & Chinese Whispers (Part 2)

Simulations vs. 'analytical proof'

- Summer Symposium 'To New Shores in Drug Development Implementing Statistical Innovation', Vienna, 27 June 2016
 - Most proofs start with …

```
Let us assume parallel groups of equal sizes and normal distributed data with \mu= 0 and \sigma= 1
```

... followed by some fancy formulas.

Do these cases ever occur in reality? Peter Bauer

Group-Sequential and Two-Stage Designs

Thank You! Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at

