



1



## To bear in Remembrance...

Whenever a theory appears to you as the only possible one, take this as a sign that you have neither understood the theory nor the problem which it was intended to solve.



Karl R. Popper

Even though it's *applied* science we're dealin' with, it still is – *science*!



Leslie Z. Benet



## **Assumptions**

#### All models rely on assumptions.

- Bioequivalence as a surrogate for therapeutic equivalence.
  - Studies in healthy volunteers in order to minimize variability (i.e., lower sample sizes than in patients).
  - Current emphasis on in vivo release ('human dissolution apparatus').
- Concentrations in the sample matrix reflect concentrations at the target receptor site.
  - In the strict sense only valid in steady state.
  - In vivo similarity in healthy volunteers can be extrapolated to the patient population(s).
- $f = \mu_T / \mu_R$  assumes that
  - $-D_T = D_R$  and
  - inter-occasion clearances are constant.



## **Assumptions**

#### All models rely on assumptions.

- Log-transformation allows for additive effects required in ANOVA.
- No carry-over effect in the model of crossover studies.
  - Cannot be statistically adjusted.
  - Has to be avoided by design (suitable washout).
  - Shown to be a statistical artifact in meta-studies.
  - Exception: Endogenous compounds (biosimilars!)
- Between- and within-subject errors are independently and normally distributed about unity with variances  $\sigma_s$  and  $\sigma_e$ .
  - If the reference formulation shows higher variability than the test,
     the 'good' test will be penalized for the 'bad' reference.
- All observations made on different subjects are independent.
  - No monocygotic twins or triplets in the study!





## Sample Size

#### Only power is accessible.

- The required sample size depends on
  - the acceptance range (AR) for bioequivalence;
  - the error variance ( $s^2$ ) associated with the PK metrics as estimated from
    - published data,
    - a pilot study, or
    - previous studies;
  - the fixed significance level ( $\alpha$ );
  - the expected deviation ( $\triangle$ ) from the reference product and;
  - the desired power  $(1 \beta)$ .
- Three values are known and fixed (AR,  $\alpha$ ,  $1 \beta$ ), one is an assumption ( $\Delta$ ), and one an estimate ( $s^2$ ). Hence, the correct term is 'sample size estimation'.



## Sample Size

#### Only power is accessible.

- The sample size is searched in an iterative procedure until at least the desired power is obtained.
  - Exact methods for ABE in parallel, crossover, and replicate designs available.
  - Simulations suggested for Group-Sequential and Two-Stage Designs.
- According to ICH E9 a sensitivity analysis is mandatory to explore the impact on power if values deviate from assumptions.





## Sample Size

#### **Example**

- 2×2×2, assumed *GMR* 0.95,
   CV<sub>w</sub> 0.25, desired power 0.9,
   min. acceptable power 0.8.
  - Sample size 38 (power 0.909)
  - $CV_w$  can increase to 0.298 (rel. +19%)
  - GMR can decrease to 0.923 (rel. -2.8%)
  - 10 drop-outs acceptable (rel. –26%)
  - Most critical is the GMR!









## **Dealing with Uncertainty**

#### Nothing is 'carved in stone'.

- Never assume perfectly matching products.
  - Generally a  $\triangle$  of not better than 5% should be assumed (0.950 1.053).
  - For HVD(P)s do not assume a  $\triangle$  of <10% (0.900 1.111).
- Do not use the CV but one of its confidence limits.
  - Suggested  $\alpha$  0.2 (here: the producer's risk).
  - For ABE the upper CL.
  - For reference-scaling the lower CL.
- Better alternatives.
  - Group-Sequential Designs
     Fixed total sample size, interim analysis for early stopping.
  - (Adaptive) Sequential Two-Stage Designs
     Fixed stage 1 sample size, re-estimation of the total sample size in the interim analysis.





## **Dealing with Uncertainty**

#### **Group-Sequential Designs.**

- Fixed total sample size (N) and in BE one interim analysis.
  - Requires two assumptions. One 'worst case' CV for the total sample size and a 'realistic' CV for the interim.
  - All published methods were derived for superiority testing, parallel groups, normal distributed data with known variance, and interim at N/2.
  - That's not what we have in BE: equivalence (generally in a crossover), lognormal data with unknown variance. Furthermore, due to drop-outs, the interim might not be exactly at N/2 (might inflate the Type I Error).
  - Asymmetric split of  $\alpha$  is possible, *i.e.*, a small  $\alpha$  in the interim and a large one in the final analysis. Examples: Haybittle/Peto ( $\alpha$ , 0.001,  $\alpha$ , 0.049), O'Brien/Fleming ( $\alpha$ , 0.005,  $\alpha$ , 0.048), Zheng et al. ( $\alpha$ , 0.01,  $\alpha$ , 0.04). May require  $\alpha$ -spending functions (Lan/DeMets, Jennison/Turnbull) in order to control the Type I Error.





## **Dealing with Uncertainty**

#### (Adaptive) Sequential Two-Stage Designs.

- Fixed stage 1 sample size  $(n_1)$ , sample size re-estimation in the interim.
  - Generally a fixed GMR is assumed.
  - Fully adaptive methods (*i.e.*, taking also the PE of stage 1 into account) are problematic. May deteriorate power and require a futility criterion.
     Simulations mandatory.
  - Two 'Types'
    - 1. The same adjusted  $\alpha$  is applied in both stages (regardless whether a study stops in the first stage or proceeds to the second stage).
    - 2. An unadjusted  $\alpha$  may be used in the first stage, dependent on interim power.
  - All published methods are valid only for a range of combinations of stage 1 sample sizes, CVs, GMRs, and desired power.
  - Contrary to common believes no analytical proof of keeping the TIE exist.
     It is the responsibility of the sponsor to demonstrate (e.g., in simulations)
     that the consumer risk is preserved.





#### Type I Error.

- In BE the Null Hypothesis ( $H_0$ ) is inequivalence.
  - TIE = Probability of falsely rejecting  $H_0$  (i.e., accepting  $H_1$  and claiming BE).
  - Can be calculated for the nominal significance level ( $\alpha$ ) assuming a point estimate at one of the limits of the acceptance range.
    - Example: 2×2×2 crossover, *CV* 20%, *n* 20,  $\alpha$  0.05,  $\theta_0$  0.80 or 1.25.

```
library(PowerTOST)  
AL <- c(1-0.20, 1/(1-0.20)) # common acceptance range: 0.80-1.25 power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AL[1])  
[1] 0.0499999  
power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AL[2])  
[1] 0.0499999
```

TOST is not a uniformly most powerful test.

```
power.TOST(CV=0.20, n=12, alpha=0.05, theta0=AL[2]) [1] 0.04976374
```

However, the TIE never exceeds the nominal level.

```
power.TOST(CV=0.20, n=72, alpha=0.05, theta0=AL[2]) [1] 0.05
```





#### Type I Error.

Alternatively perform simulations to obtain an empiric TIE.

[1] 0.04999703

In other settings (i.e., frameworks like Two-Stage Designs or reference-scaled ABE) analytical solutions for power – and therefore, the TIE – are not possible.





#### Type I Error and power.

• Fixed sample  $2\times2\times2$  design ( $\alpha$  0.05). GMR 0.95, CV 10 – 80%, n 12 –72







#### Type I Error and power.

• 'Type 1' TSD (Potvin Method B,  $\alpha_{adj}$  0.0294). *GMR* 0.95, *CV* 10 – 80%,  $n_1$  12 – 72





#### Type I Error and power.

• 'Type 2' TSD (Potvin Method C,  $\alpha_{adj}$  0.05|0.0294). *GMR* 0.95, *CV* 10 – 80%,  $n_1$  12 – 72





## **Group-Sequential Designs**

### Long and accepted tradition in clinical research (phase III).

- Based on Armitage et al. (1969), McPherson (1974), Pocock (1977),
   O'Brien/Fleming (1979), Lan/DeMets (1983), Jennison/Turnbull (1999), ...
  - Developed for superiority testing, parallel groups, normal distributed data with known variance, and interim at N/2.
  - First proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe.
  - Asymmetric split of  $\alpha$  is possible, *i.e.*,
    - a small  $\alpha$  in the interim (i.e., stopping for futility) and
    - a large one in the final analysis (i.e., only small sample size penality).
    - Examples: Haybittle/Peto ( $\alpha_1$  0.001,  $\alpha_2$  0.049), O'Brien/Fleming ( $\alpha_1$  0.005,  $\alpha_2$  0.048).
    - Not developed for crossover designs and sample size re-estimation (fixed  $n_1$  and variable N): Lower  $\alpha_2$  or  $\alpha$ -spending functions (Lan/DeMets, Jennison/Turnbull) are needed in order to control the Type I Error.
    - Zheng et al. (2015) for BE in crossovers ( $\alpha_1$  0.01,  $\alpha_2$  0.04) keeps the TIE.





# **Group-Sequential Designs**

## Type I Error.





**Maximum 0.05849** 

 $\alpha_2$  0.0413 needed to control the TIE

O'Brien/Fleming  $\alpha_1$  0.005,  $\alpha_2$  0.048



**Maximum 0.05700** 

 $\alpha_2$  0.0415 needed to control the TIE

Zheng et al.  $\alpha_1$  0.01,  $\alpha_2$  0.04



**Maximum 0.04878** 





## **Group-Sequential Designs**

- Australia (2004), Canada (Draft 2009)
  - Application of Bonferroni's correction ( $\alpha_{adi}$  0.025).
  - Theoretical TIE ≤0.0494.
  - For CVs and samples sizes common in BE the TIE generally is  $\leq$ 0.04.
- Canada (2012)
  - Pocock's  $lpha_{adj}$  0.0294.
  - $-n_1$  based on 'most likely variance' + additional subjects in order to compensate for expected dropout-rate.
  - N based on 'worst-case scenario'.
  - If  $n_1 \neq N/2$  relevant inflation of the TIE is possible!  $\alpha$ -spending functions can control the TIE (but are *not* mentioned in the guidance).





Methods by Potvin et al. (2008) first validated framework in the context of BE.

- Supported by the 'Product Quality Research Institute' (FDA/CDER, Health Canada, USP, AAPS, PhRMA...).
- Inspired by conventional BE testing and Pocock's  $\alpha_{adj}$  0.0294 for GSDs.
  - A fixed *GMR* is assumed (only the *CV* in the interim is taken into account for sample size re-estimation). *GMR* in the first publication was 0.95; later extended to 0.90 by other authors.
  - Target power 80% (later extended to 90%).
  - Two 'Types'
    - 1. The same adjusted  $\alpha$  is applied in both stages (regardless whether a study stops in the first stage or proceeds to the second stage).
    - 2. An unadjusted  $\alpha$  may be used in the first stage, dependent on interim power.





#### Frameworks for crossover TSDs.

• Stage 1 sample sizes 12 – 60, no futility rules.

| Reference              | Туре | Method | GMR  | Target power | CV <sub>w</sub> | $lpha_{\sf adj}$ | TIE <sub>max</sub> |
|------------------------|------|--------|------|--------------|-----------------|------------------|--------------------|
| Detrin et al. (2009)   | 1    | В      | 0.95 | 80%          | 10 – 100%       | 0.0294           | 0.0485             |
| Potvin et al. (2008)   | 2    | C      |      |              |                 |                  | 0.0510             |
| Montague et al. (2012) | 2    | D      | 0.90 |              |                 | 0.0280           | 0.0518             |
|                        | 1    | В      | 0.95 | 90%          | 10 – 80%        | 0.0284           | 0.0501             |
| Fuglsang (2013)        | 2    | C/D    |      |              |                 | 0.0274           | 0.0503             |
|                        | 2    | C/D    | 0.90 |              |                 | 0.0269           | 0.0501             |

• Xu et al. (2015). GMR 0.95, target power 80%, futility for the  $(1-2\alpha_1)$  Cl.

| Type | Method | CV <sub>w</sub> | Futility region | $\alpha_{\scriptscriptstyle \parallel}$ | $\alpha_{2}$ | TIE <sub>max</sub> |
|------|--------|-----------------|-----------------|-----------------------------------------|--------------|--------------------|
| 1    | Е      | 40 200/         | 0.9374 - 1.0667 | 0.0249                                  | 0.0363       | 0.050              |
| 2    | F      | 10 – 30%        | 0.9492 - 1.0535 | 0.0248                                  | 0.0364       | 0.050              |
| 1    | Е      | 20 FE0/         | 0.9305 - 1.0747 | 0.0254                                  | 0.0357       | 0.050              |
| 2    | F      | 30 – 55%        | 0.9350 - 1.0695 | 0.0259                                  | 0.0349       | 0.050              |



- EMA (Jan 2010)
  - Acceptable.
  - $\alpha_{adj}$  0.0294 = 94.12% CI in *both* stages given as an example (*i.e.*, Potvin Method B preferred?)
  - "... there are many acceptable alternatives and the choice of how much alpha to spend at the interim analysis is at the company's discretion."
  - "... pre-specified ... adjusted significance levels to be used for each of the analyses."
  - Remarks
    - The TIE must be preserved. Especially important if "exotic" methods are applied.
    - Does the requirement of pre-specifying *both* alphas imply that  $\alpha$ -spending functions or adaptive methods (where  $\alpha_2$  is based on the interim and/or the final sample size) are not acceptable?
    - TSDs are on the workplan of the EMA's Biostatistics Working Party for 2016...





- EMA Q&A Document Rev. 7 (Feb 2013)
  - The model for the combined analysis is (all effects fixed):

```
stage + sequence + sequence(stage) + subject(sequence × stage) +
period(stage) + formulation
```

- At least two subjects in the second stage.
- Remarks
  - None of the publications used sequence(stage);
     no poolability criterion combining is always allowed, even if a significant difference between stages is observed.
     Simulations performed by the BSWP or out of the blue?
  - Modification shown to be irrelevant (Karalis/Macheras 2014). Furthermore, no difference whether subjects are treated as a fixed or random term (unless PE >1.20). Requiring two subjects in the second stage is unnecessary.

```
library(Power2Stage)
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25)$pBE
[1] 0.046262
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25, min.n2=2)$pBE
[1] 0.046262
```



- Health Canada (May 2012)
  - Potvin Method C recommended.
- FDA
  - Potvin Method C / Montague Method D recommended (Davit et al. 2013).
- Russia (2013)
  - Acceptable; Potvin Method B preferred?





#### **Futility Rules.**

- Futility rules (for early stopping) do not inflate the TIE, but may deteriorate power.
  - State stopping criteria unambiguously in the protocol.
  - Simulations are mandatory in order to assess whether power is sufficient:
    - "Introduction of [...] futility rules may severely impact power in trials with sequential designs and under some circumstances such trials might be unethical."

      Fuglsang 2014
    - "[...] before using any of the methods [...], their operating characteristics should be evaluated for a range of values of  $n_1$ , CV and true ratio of means that are of interest, in order to decide if the Type I error rate is controlled, the power is adequate and the potential maximum total sample size is not too great."

      Jones/Kenward 2014
  - Simulations uncomplicated with current software.
    - Finding a suitable  $\alpha_{adj}$  and validating for TIE and power takes ~20 minutes with the R-package Power2Stage (open source).





#### **Cost Analysis.**

- Consider certain questions:
  - Is it possible to assume a best/worst-case scenario?
  - How large should the size of the first stage be?
  - How large is the expected average sample size in the second stage?
  - Which power can one expect in the first stage and the final analysis?
  - Will introduction of a futility criterion substantially decrease power?
  - Is there an unacceptable sample size penalty compared to a fixed sample design?





#### **Cost Analysis.**

- Example:
  - Expected CV 20%, target power is 80% for a GMR of 0.95.
     Comparison of a 'Type 1' TSD with a fixed sample design (n 20, 83.5% power).

| <b>n</b> <sub>1</sub> | E[N] | Studies stopped in stage 1 (%) | Studies failed in stage 1 (%) | Power in stage 1 (%) | Studies in stage 2 (%) | Final power (%) | Increase of costs (%) |
|-----------------------|------|--------------------------------|-------------------------------|----------------------|------------------------|-----------------|-----------------------|
| 12                    | 20.6 | 43.6                           | 2.3                           | 41.3                 | 56.4                   | 84.2            | +2.9                  |
| 14                    | 20.0 | 55.6                           | 3.0                           | 52.4                 | 44.5                   | 85.0            | +0.2                  |
| 16                    | 20.1 | 65.9                           | 3.9                           | 61.9                 | 34.1                   | 85.2            | +0.3                  |
| 18                    | 20.6 | 74.3                           | 5.0                           | 69.3                 | 25.7                   | 85.5            | +3.1                  |
| 20                    | 21.7 | 81.2                           | 6.3                           | 74.9                 | 18.8                   | 86.2            | +8.4                  |
| 22                    | 23.0 | 87.2                           | 7.3                           | 79.8                 | 12.8                   | 87.0            | +15.0                 |
| 24                    | 24.6 | 91.5                           | 7.9                           | 83.6                 | 8.5                    | 88.0            | +22.9                 |





#### Conclusions.

- Do not blindly follow guidelines.
   Some current recommendations may inflate the patient's risk and/or deteriorate power.
- Published frameworks can be applied without requiring the sponsor to perform own simulations – although they could further improve power based on additional assumptions.
- GSDs and TSDs are both ethical and economical alternatives to fixed sample designs.
- Recently the EMA's BSWP unofficially! expressed some concerns about the validity of methods based on simulations.
   More about that in the second presentation.





#### Outlook.

- Selecting a candidate formulation from a higher-order crossover; continue with 2×2×2 in the second stage.
- Continue a 2×2×2 TSD in a replicate design for reference-scaling.
- Fully adaptive methods (taking the PE of stage 1 into account without jeopardizing power).
- Exact methods (not relying on simulations).



# **Two-Stage Sequential Designs Industry Perspective**



# Thank You! Open Questions?



### Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at





## References

- Diletti E, Hauschke D, Steinijans VW. Sample size determination for bioequivalence assessment by means of confidence intervals. Int J Clin Pharm Ther Toxicol. 1991;29(1):1–8.
- Labes D, Schütz H, Lang B. PowerTOST: Power and Sample size based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. R package version 1.4-2. 2016. https://cran.r-project.org/package=PowerTOST
- Pocock SJ. *Group sequential methods in the design and analysis of clinical trials.* Biometrika. 1977;64:191–9.
- Gould LA. *Group sequential extension of a standard bioequivalence testing procedure.* J Pharmacokinet Biopharm. 1995;23:57–86. DOI 10.1007/BF02353786
- Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol. 1971;44:793–7. DOI 10.1259/0007-1285-44-526-793
- Peto R et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br J Cancer. 1977;35:2–39. DOI 10.1038/bic.1977.1
- O'Brien PC, Fleming TR. *A multiple testing procedure for clinical trials*. Biometrics. 1979;35:549–56.
- Lan KG, DeMets DL. *Discrete sequential boundaries for clinical trials*. Biometrika. 1983:70:659–63.
- Hauck WW, Preston PE, Bois FY. A Group Sequential Approach to Crossover Trials for Average Bioequivalence. J Biopharm Stat. 1997;71(1):87–96. DOI 10.1080/10543409708835171
- Jennison C, Turnbull BW. *Equivalence tests*. In: Jennison C, Turnbull BW, editors. *Group sequential methods with applications to clinical trials*. Boca Raton: Chapman & Hall/CRC; 1999. p. 142–57.
- Wittes J et al. *Internal pilot studies I: type I error rate of the naive t-test*. Stat Med. 1999;18(24):3481–91.
  - DOI 10.1002/(SICI)1097-0258(19991230)18:24<3481::AID-SIM301>3.0.CO;2-C
- Potvin D et al. Sequential design approaches for bioequivalence studies with crossover designs. Pharmaceut Statist. 2008;7(4):245–62. DOI 10.1002/pst.294
- Montague TH et al. Additional results for 'Sequential design approaches for bioequivalence studies with crossover designs'. Pharmaceut Statist. 2012;11(1):8–13. DOI 10.1002/pst.483
- García-Arieta A, Gordon J. *Bioequivalence Requirements in the European Union:*Critical Discussion. AAPS J. 2012;14(4):738–48. DOI 10.1208/s12248-012-9382-1

- Davit B et al. Guidelines for Bioequivalence of Systemically Available Orally Administered Generic Drug Products: A Survey of Similarities and Differences. AAPS J. 2013;15(4):974–90. DOI 10.1208/s12248-013-9499-x
- Karalis V, Macheras P. *An insight into the properties of a two-stage design in bioequi-valence studies*. Pharm Res. 2013;30(7):1824–35. DOI 10.1007/s11095-013-1026-3
- Karalis V. *The role of the upper sample size limit in two-stage bioequivalence designs*. Int J Pharm. 2013;456(1):87–94. DOI 10.1016/j.ijpharm.2013.08.013
- Fuglsang A. Futility rules in bioequivalence trials with sequential designs. AAPS J. 2014;16(1):79–82. DOI 10.1208/s12248-013-9540-0
- Fuglsang A. Sequential Bioequivalence Approaches for Parallel Designs. AAPS J. 2014;16(3):373–8. DOI 10.1208/s12248-014-9571-1
- Karalis V, Macheras P. On the Statistical Model of the Two-Stage Designs in Bioequivalence Assessment. J Pharm Pharmacol. 2014;66(1):48–52. DOI 10.1111/jphp.12164
- Golkowski D, Friede T, Kieser M. Blinded sample size reestimation in crossover bioequivalence trials. Pharmaceut Stat. 2014;13(3):157–62. DOI 10.1002/pst.1617
- Jones B, Kenward MG. Chapters 12–14. In: Jones B, Kenward MG, editors. Design and analysis of crossover trials, Chapman & Hall/CRC; Boca Raton. 2014. p. 365–80.
- Schütz H. *Two-stage designs in bioequivalence trials*. Eur J Clin Pharmacol. 2015;71(3):271–81. DOI 10.1007/s00228-015-1806-2
- Zheng Ch, Zhao L, Wang J. *Modifications of sequential designs in bioequivalence trials*. Pharmaceut Statist. 2015;14(3):180–8. DOI 10.1002/pst.1672
- Kieser M, Rauch G. *Two-stage designs for crossover bioequivalence trials*. Stat Med. 2015;34(16):2403–16. DOI 10.1002/sim.6487
- König F, Wolfsegger M, Jaki T, Schütz H, Wasmer G. *Adaptive two-stage bioequiva-lence trials with early stopping and sample size re-estimation*.

  Trials. 2015;16(Suppl 2):P218. DOI 10.1186/1745-6215-16-S2-P218
- Xu et al. *Optimal adaptive sequential designs for crossover bioequivalence studies.* Pharmaceut Statist. 2016;15(1):15–27. DOI 10.1002/pst.1721
- Labes D, Schütz H. Power2Stage: Power and Sample-Size Distribution of 2-Stage Bioequivalence Studies. R package version 0.4-3. 2015. https://cran.r-project.org/package=Power2Stage

