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Two-Stage Sequential Designs

Industry Perspective
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To bear in Remembrance...

Whenever a theory appears to you

as the only possible one, take this as

a sign that you have neither under-

stood the theory nor the problem

which it was intended to solve. Karl R. Popper

Even though it’s applied science

we’re dealin’ with, it still is – science! Leslie Z. Benet
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Assumptions

All models rely on assumptions.

• Bioequivalence as a surrogate for therapeutic equivalance.

― Studies in healthy volunteers in order to minimize variability

(i.e., lower sample sizes than in patients).

― Current emphasis on in vivo release (‘human dissolution apparatus’).

• Concentrations in the sample matrix reflect

concentrations at the target receptor site.

― In the strict sense only valid in steady state.

― In vivo similarity in healthy volunteers can be extrapolated

to the patient population(s).

• ƒ = µT / µR assumes that

― DT = DR and

― inter-occasion clearances are constant.
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Assumptions

All models rely on assumptions.

• Log-transformation allows for additive effects required in ANOVA.

• No carry-over effect in the model of crossover studies.

― Cannot be statistically adjusted.

― Has to be avoided by design (suitable washout).

― Shown to be a statistical artifact in meta-studies.

― Exception: Endogenous compounds (biosimilars!)

• Between- and within-subject errors are independently and normally 

distributed about unity with variances σ²s and σ²e.

― If the reference formulation shows higher variability than the test,

the ‘good’ test will be penalized for the ‘bad’ reference.

• All observations made on different subjects are independent.

― No monocygotic twins or triplets in the study!



BA/BE Workshop | Prague, 22 September 2016 5

Sample Size

Only power is accessible.

• The required sample size depends on

― the acceptance range (AR) for bioequivalence;

― the error variance (s2) associated with the PK metrics as estimated from

– published data,

– a pilot study, or

– previous studies;

― the fixed significance level (α );

― the expected deviation (∆) from the reference product and;

― the desired power (1 – β ).

• Three values are known and fixed (AR, α, 1 – β ),

one is an assumption (∆), and

one an estimate (s2).

Hence, the correct term is ‘sample size estimation’.
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Sample Size

Only power is accessible.

• The sample size is searched in an iterative procedure until

at least the desired power is obtained.

― Exact methods for ABE in parallel, crossover, and replicate designs

available.

― Simulations suggested for Group-Sequential and Two-Stage Designs.

• According to ICH E9 a sensitivity analysis is mandatory to

explore the impact on power if values deviate from assumptions.
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Sample Size

Example

• 2×2×2, assumed GMR 0.95,

CVw 0.25, desired power 0.9,

min. acceptable power 0.8.

― Sample size 38 (power 0.909)

― Most critical is the GMR!

― CVw can increase to 0.298

(rel. +19%)

― GMR can decrease to 0.923

(rel. –2.8%)

― 10 drop-outs acceptable

(rel. –26%)
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10N = 28 (0.8074)

2x2 design; assumed:

  CV = 0.2500, GMR = 0.9500
  BE margins:
    0.8000 ... 1.2500
power:

  target = 0.9000
  estimated = 0.9089 (N = 38)
  minimum acceptable = 0.8000
acceptable (relative) deviations:
  CV = 0.2981 (+19.3%)
  GMR = 0.9232 (-2.82%)
  N = 28 (-26.3%)
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Dealing with Uncertainty

Nothing is ‘carved in stone’.

• Never assume perfectly matching products.

― Generally a ∆ of not better than 5% should be assumed (0.950 – 1.053).

― For HVD(P)s do not assume a ∆ of <10% (0.900 – 1.111).

• Better alternatives.

― Group-Sequential Designs

Fixed total sample size, interim analysis for early stopping.

― (Adaptive) Sequential Two-Stage Designs

Fixed stage 1 sample size, re-estimation of the total sample size

in the interim analysis.

• Do not use the CV but one of its confidence limits.

― Suggested α 0.2 (here: the producer’s risk).

― For ABE the upper CL.

― For reference-scaling the lower CL.

(pilot study) sample size

%
 C

V

6 12 18 24

25

30

35

40

estimated CV

upper CI
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Dealing with Uncertainty

Group-Sequential Designs.

• Fixed total sample size (N) and – in BE – one interim analysis.

― Requires two assumptions. One ‘worst case’ CV for the total sample size 

and a ‘realistic’ CV for the interim.

― All published methods were derived for superiority testing, parallel 

groups, normal distributed data with known variance, and interim at N/2.

― That’s not what we have in BE: equivalence (generally in a crossover), 

lognormal data with unknown variance. Furthermore, due to drop-outs, 

the interim might not be exactly at N/2 (might inflate the Type I Error).

― Asymmetric split of α is possible, i.e.,

a small α in the interim and a large one in the final analysis.

Examples: Haybittle/Peto (α1 0.001, α2 0.049), O’Brien/Fleming (α1 0.005, 

α2 0.048), Zheng et al. (α1 0.01, α2 0.04).

May require α-spending functions (Lan/DeMets, Jennison/Turnbull) in 

order to control the Type I Error.
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Dealing with Uncertainty

(Adaptive) Sequential Two-Stage Designs.

• Fixed stage 1 sample size (n1), sample size re-estimation in the interim.

― Generally a fixed GMR is assumed.

― Fully adaptive methods (i.e., taking also the PE of stage 1 into account)

are problematic. May deteriorate power and require a futility criterion. 

Simulations mandatory.

― Two ‘Types’

1. The same adjusted α is applied in both stages (regardless whether

a study stops in the first stage or proceeds to the second stage).

2. An unadjusted α may be used in the first stage, dependent on interim power.

― All published methods are valid only for a range of combinations of 

stage 1 sample sizes, CVs, GMRs, and desired power.

― Contrary to common believes no analytical proof of keeping the TIE exist. 

It is the responsibility of the sponsor to demonstrate (e.g., in simulations) 

that the consumer risk is preserved.
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Excursion

Type I Error.

• In BE the Null Hypothesis (H0) is inequivalence.

― TIE = Probability of falsely rejecting H0 (i.e., accepting H1 and claiming BE).

― Can be calculated for the nominal significance level (α ) assuming a

point estimate at one of the limits of the acceptance range.

– Example: 2×2×2 crossover, CV 20%, n 20, α 0.05, θ0 0.80 or 1.25.
library(PowerTOST)
AL <- c(1-0.20, 1/(1-0.20)) # common acceptance range: 0.80–1.25
power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AL[1])
[1] 0.0499999
power.TOST(CV=0.20, n=20, alpha=0.05, theta0=AL[2])

[1] 0.0499999

– However, the TIE never exceeds the nominal level.
power.TOST(CV=0.20, n=72, alpha=0.05, theta0=AL[2])
[1] 0.05

– TOST is not a uniformly most powerful test.
power.TOST(CV=0.20, n=12, alpha=0.05, theta0=AL[2])
[1] 0.04976374
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Excursion

Type I Error.
– Alternatively perform simulations to obtain an empiric TIE.

power.TOST.sim(CV=0.20, n=20, alpha=0.05, theta0=AL[2],
nsims=1e8)

[1] 0.04999703

– In other settings (i.e., frameworks

like Two-Stage Designs or

reference-scaled ABE) analytical

solutions for power – and

therefore, the TIE – are not

possible.
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Excursion

Type I Error and power.

• Fixed sample 2×2×2 design (α 0.05). GMR 0.95, CV 10 – 80%, n 12 –72

TIE power
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Excursion

Type I Error and power.

• ‘Type 1’ TSD (Potvin Method B, αadj 0.0294). GMR 0.95, CV 10 – 80%,

n1 12 – 72
TIE power
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Excursion

Type I Error and power.

• ‘Type 2’ TSD (Potvin Method C, αadj 0.05|0.0294). GMR 0.95, CV 10 – 80%, 

n1 12 – 72
TIE power
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Group-Sequential Designs

Long and accepted tradition in clinical research (phase III).

• Based on Armitage et al. (1969), McPherson (1974), Pocock (1977), 

O’Brien/Fleming (1979), Lan/DeMets (1983), Jennison/Turnbull (1999), …

― Developed for superiority testing, parallel groups, normal distributed data 

with known variance, and interim at N/2.

― First proposal by Gould (1995) in the field of BE did not get regulatory 

acceptance in Europe.

― Asymmetric split of α is possible, i.e.,

― a small α in the interim (i.e., stopping for futility) and

― a large one in the final analysis (i.e., only small sample size penality).

― Examples: Haybittle/Peto (α1 0.001, α2 0.049), O’Brien/Fleming (α1 0.005, α2 0.048).

― Not developed for crossover designs and sample size re-estimation (fixed n1 and 

variable N): Lower α2 or α-spending functions (Lan/DeMets, Jennison/Turnbull) 

are needed in order to control the Type I Error.

― Zheng et al. (2015) for BE in crossovers (α1 0.01, α2 0.04) keeps the TIE.
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Group-Sequential Designs

Type I Error.

Zheng et al.

α1 0.01, α2 0.04

Maximum 0.04878

Haybittle/Peto

α1 0.001, α2 0.049

O’Brien/Fleming

α1 0.005, α2 0.048

Maximum 0.05849 Maximum 0.05700

α2 0.0413 needed

to control the TIE

α2 0.0415 needed

to control the TIE
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Group-Sequential Designs

Review of Guidelines.

• Australia (2004), Canada (Draft 2009)

― Application of Bonferroni’s correction (αadj 0.025).

― Theoretical TIE ≤0.0494.

― For CVs and samples sizes common in BE the TIE generally is ≤0.04.

• Canada (2012)

― Pocock’s αadj 0.0294.

― n1 based on ‘most likely variance’ + additional subjects

in order to compensate for expected dropout-rate.

― N based on ‘worst-case scenario’.

― If n1 ≠ N/2 relevant inflation of the TIE is possible!

α-spending functions can control the TIE (but are not mentioned

in the guidance).
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(Adaptive) Sequential Two-Stage Designs

Methods by Potvin et al. (2008) first validated framework in 

the context of BE.

• Supported by the ‘Product Quality Research Institute’ (FDA/CDER, 

Health Canada, USP, AAPS, PhRMA…).

• Inspired by conventional BE testing and Pocock’s αadj 0.0294 for GSDs.

― A fixed GMR is assumed (only the CV in the interim is taken into account 

for sample size re-estimation). GMR in the first publication was 0.95; later 

extended to 0.90 by other authors.

― Target power 80% (later extended to 90%).

― Two ‘Types’

1. The same adjusted α is applied in both stages (regardless whether

a study stops in the first stage or proceeds to the second stage).

2. An unadjusted α may be used in the first stage, dependent on interim power.
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(Adaptive) Sequential Two-Stage Designs

Frameworks for crossover TSDs.

• Stage 1 sample sizes 12 – 60, no futility rules.

2

2

1

2

2

1

Type

0.0510C

0.0485
0.0294

10 – 100%80%
0.95

B
Potvin et al. (2008)

0.0269

0.0274

0.0284

0.0280

αadj

0.90

10 – 80%

CVw

0.0503C/D 90%

Target power

0.95

0.90

GMR

Fuglsang (2013)

Montague et al. (2012)

Reference

0.0501B

0.0518D

0.0501C/D

TIEmaxMethod

0.9350 – 1.0695

0.9305 – 1.0747

0.9492 – 1.0535

0.9374 – 1.0667

Futility region

0.0259

0.0254

0.0248

0.0249

α1

0.0349

0.0357

0.0364

0.0363

α2

2

1

2

1

Type

0.050
10 – 30%

E

30 – 55%

CVw

0.050E

0.050F

0.050F

TIEmaxMethod

• Xu et al. (2015). GMR 0.95, target power 80%, futility for the (1–2α1) CI.
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines.

• EMA (Jan 2010)

― Acceptable.

― αadj 0.0294 = 94.12% CI in both stages given as an example

(i.e., Potvin Method B preferred?)

― “… there are many acceptable alternatives and the choice of how much 

alpha to spend at the interim analysis is at the company’s discretion.”

― “… pre-specified … adjusted significance levels to be used for each of the 

analyses.”

― Remarks

― The TIE must be preserved. Especially important if “exotic” methods are applied.

― Does the requirement of pre-specifying both alphas imply that α-spending 

functions or adaptive methods (where α2 is based on the interim and/or the final 

sample size) are not acceptable?

― TSDs are on the workplan of the EMA’s Biostatistics Working Party for 2016…
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines.

• EMA Q&A Document Rev. 7 (Feb 2013)

― The model for the combined analysis is (all effects fixed):
stage + sequence + sequence(stage) + subject(sequence × stage) +
period(stage) + formulation

― At least two subjects in the second stage.

― Remarks

― None of the publications used sequence(stage);

no poolability criterion – combining is always allowed, even if a significant 

difference between stages is observed.

Simulations performed by the BSWP or out of the blue?

― Modification shown to be irrelevant (Karalis/Macheras 2014). Furthermore, no 

difference whether subjects are treated as a fixed or random term (unless PE >1.20). 

Requiring two subjects in the second stage is unnecessary.
library(Power2Stage)
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25)$pBE
[1] 0.046262
power.2stage(method="B", CV=0.2, n1=12, theta0=1.25, min.n2=2)$pBE
[1] 0.046262
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(Adaptive) Sequential Two-Stage Designs

Review of Guidelines.

• Health Canada (May 2012)

― Potvin Method C recommended.

• FDA

― Potvin Method C / Montague Method D recommended (Davit et al. 2013).

• Russia (2013)

― Acceptable; Potvin Method B preferred?
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(Adaptive) Sequential Two-Stage Designs

Futility Rules.

• Futility rules (for early stopping) do not inflate the TIE,

but may deteriorate power.

― State stopping criteria unambiguously in the protocol.

― Simulations are mandatory in order to assess whether power is sufficient:

“Introduction of […] futility rules may severely impact power in trials with

sequential designs and under some circumstances such trials might

be unethical.” Fuglsang 2014

“[…] before using any of the methods […], their operating characteristics

should be evaluated for a range of values of n1, CV and true ratio of means

that are of interest, in order to decide if the Type I error rate is controlled,

the power is adequate and the potential maximum total sample size is not

too great.” Jones/Kenward 2014

― Simulations uncomplicated with current software.

― Finding a suitable αadj and validating for TIE and power takes ~20 minutes

with the R-package Power2Stage (open source).
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(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

• Consider certain questions:

― Is it possible to assume a best/worst-case scenario?

― How large should the size of the first stage be?

― How large is the expected average sample size in the second stage?

― Which power can one expect in the first stage and the final analysis?

― Will introduction of a futility criterion substantially decrease power?

― Is there an unacceptable sample size penalty compared to a

fixed sample design?
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(Adaptive) Sequential Two-Stage Designs

Cost Analysis.

• Example:

― Expected CV 20%, target power is 80% for a GMR of 0.95.

Comparison of a ‘Type 1’ TSD with a fixed sample design (n 20, 83.5% power).

+15.087.012.879.87.387.223.022

8.5

18.8

25.7

34.1

44.5

56.4

Studies in

stage 2 (%)

88.0

86.2

85.5

85.2

85.0

84.2

Final

power (%)

+0.361.93.965.920.116

+3.169.35.074.320.618

+8.474.96.381.221.720

+22.983.67.991.524.624

55.6

43.6

Studies stopped

in stage 1 (%)

14

12

n1

52.4

41.3

Power in

stage 1 (%)

3.0

2.3

Studies failed

in stage 1 (%)

20.0

20.6

E[N]

+0.2

+2.9

Increase of

costs (%)
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(Adaptive) Sequential Two-Stage Designs

Conclusions.

• Do not blindly follow guidelines.

Some current recommendations may inflate the patient’s risk and/or 

deteriorate power.

• GSDs and TSDs are both ethical and economical alternatives

to fixed sample designs.

• Recently the EMA’s BSWP – unofficially! – expressed some concerns 

about the validity of methods based on simulations.

More about that in the second presentation.

• Published frameworks can be applied without requiring the sponsor

to perform own simulations – although they could further improve power 

based on additional assumptions.



BA/BE Workshop | Prague, 22 September 2016 28

(Adaptive) Sequential Two-Stage Designs

Outlook.

• Selecting a candidate formulation from a higher-order crossover; 

continue with 2×2×2 in the second stage.

• Fully adaptive methods (taking the PE of stage 1 into account –

without jeopardizing power).

• Exact methods (not relying on simulations).

• Continue a 2×2×2 TSD in a replicate design for reference-scaling.
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Thank You!

Open Questions?

Helmut Schütz

BEBAC
Consultancy Services for

Bioequivalence and Bioavailability Studies

1070 Vienna, Austria

helmut.schuetz@bebac.at

Two-Stage Sequential Designs

Industry Perspective

mailto:helmut.schuetz@bebac.at
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://bebac.at/
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