Helmut Schütz

Inflation of the Type I Error in Reference-scaled Average Bioequivalen

Study Designs

The more 'sophisticated' a design is, the more information can be extracted.

- Hierarchy of designs:

Full replicate (RTRT | TRTR or RTR | TRT) $\stackrel{\rightharpoonup}{\text { ® }}$
Partial replicate (RRT | RTR | TRR) 각
$2 \times 2 \times 2$ crossover (RT | TR) ৯,
Parallel ($\mathrm{R} \mid \mathrm{T}$)

- Variances which can be estimated:

Parallel:	total variance (pooled of between + within subjects)
$2 \times 2 \times 2$ crossover:	+ between, within subjects \hat{y}
Partial replicate:	+ within subjects (of R) \hat{y}
Full replicate:	+ within subjects (of R and T)

Highly Variable Drugs / Drug Products

Counterintuitive concept of BE :

Two formulations with a large difference in means are declared bioequivalent if variances are low, but not $B E$ - even if the difference is quite small - due to high variability.

Modified from Tothfálusi et al. (2009), Fig. 1

HVD(P)s - Reference-scaling

It may be almost impossible to demonstrate BE with a reasonable sample size.

- Reference-scaling (i.e., widening the acceptance range based of the variability of the reference) in 2010 introduced by the FDA and EMA and in 2016 by Health Canada.
- Requires a replicate design, where at least the reference product is administered twice.
- Smaller sample sizes compared to a standard $2 \times 2 \times 2$ design but outweighed by increased number of periods.
- Similar total number of individual treatments.
- Any replicate design can be evaluated for 'classical' (unscaled) Average Bioequivalence (ABE) as well. Switching $\mathrm{CV}_{\text {wR }}$ 30\%:
- FDA: \quad AUC and $C_{\text {max }}$
- EMA: $\quad C_{\text {max }} ;$ MR products additionally: $C_{s s, m i n}, C_{s s, r}$, partial AUCs
- Health Canada: AUC

HVD(P)s - Reference-scaling

Models (in log-scale).

- ABE Model:
- A difference Δ of $\leq 20 \%$ is considered to be clinically not relevant.
- The limits $[L, U]$ of the acceptance range are fixed to $\log (1-\Delta)=\log \left((1-\Delta)^{-1}\right)$ or $L \sim-0.2231$ and $U \sim+0.2231$.
- The consumer risk is fixed with 0.05 . BE is concluded if the $100(1-2 \alpha)$ confidence interval lies entirely within the acceptance range.

$$
-\theta_{A} \leq \mu_{T}-\mu_{R} \leq+\theta_{A}
$$

- SABEL Model:
- Switching condition θ_{S} is derived from the regulatory standardized variation σ_{0} (proportionality between acceptance limits in log-scale and $\sigma_{w R}$ in the highly variable region).

$$
-\theta_{S} \leq \frac{\mu_{T}-\mu_{R}}{\sigma_{w R}} \leq+\theta_{S}
$$

HVD(P)s - Reference-scaling

Regulatory Approaches.

- Bioequivalence limits derived from σ_{0} and $\sigma_{w R}$

$$
\theta_{s}=\frac{\log (1.25)}{\sigma_{0}},[L, U]=e^{ \pm \theta_{s} \cdot \sigma_{w R}}
$$

- FDA
- Scaling $\sigma_{w R} 0.25\left(\theta_{s} 0.893\right)$ but applicable at $C V_{w R} \geq 30 \%$.
- Discontinuity at $C V_{w R} 30 \%$.
- EMA
- Scaling $\sigma_{0} 0.2936\left(\theta_{S} 0.760\right)$.
- Upper cap at $C V_{\text {wR }} 50 \%$.
- Health Canada
- Like EMA but upper cap at $C V_{w R} 57.4 \%$.

HVD(P)s - Reference-scaling

The EMA's Approach.

- Average Bioequivalence with Expanding Limits - ABEL (crippled from Endrényi and Tóthfalusi 2009).
- Justification that the widened acceptance range is clinically not relevant (important - different to the FDA).
- Assumes identical variances of T and $\mathrm{R}[$ sic] like in a $2 \times 2 \times 2$.
- All fixed effects model according to the Q\&A-document preferred.
- Mixed-effects model (allowing for unequival variances) is 'not compatible with CHMP guideline'...
- Scaling limited at a maximum of $C V_{\text {wR }} 50 \%$ (i.e., to 69.84 - 143.19\%).
- GMR within $0.8000-1.2500$.
- Demonstration that $C V_{w R}>30 \%$ is not caused by outliers (box plots of studentized intra-subject residuals?)...
$-\geq 12$ subjects in sequence RTR of the 3-period full replicate design.

HVD(P)s - Reference-scaling

The EMA's Approach.

- Decision Scheme.
- The Null Hypothesis is specified in the face of the data.
- Acceptance limits themselves become random variables.
- Type I Error (consumer risk) might be inflated.

HVD(P)s - Reference-scaling

Assessing the Type I Error (TIE).

- TIE = falsely concluding BE at the limits of the acceptance range.
- Due to the decision scheme direct calculation of the TIE at the scaled limits is not possible;
\rightarrow extensive simulations required ($10^{6} \mathrm{BE}$ studies mandatory).
- Inflation of the TIE suspected.
(Chow et al. 2002, Willavazie/Morgenthien 2006, Chow/Liu 2009,
Patterson/Jones 2012).
- Confirmed.
- EMA's ABEL
(Tóthfalusi/Endrényi 2009, BEBA-Forum 2013, Wonnemann et al. 2015, Muñoz et al. 2016, Labes/Schütz 2016).
- FDA's RSABE
(Tóthfalusi/Endrényi 2009, BEBA-Forum 2013, Muñoz et al. 2016).

HVD(P)s - Reference-scaling

Example for ABEL

- RTRT|TRTR
sample size 18-96
$C V_{\text {wR }}$ 20\%-60\%
- TIE ${ }_{\text {max }} 0.0837$.
- Relative increase of the consumer risk 67% !

HVD(P)s - Reference-scaling

What is going on here?

- SABE is stated in model parameters ...

$$
-\theta_{S} \leq \frac{\mu_{T}-\mu_{R}}{\sigma_{w R}} \leq+\theta_{S}
$$

... which are unknown.

- Only their estimates (GMR, $s_{w R}$) are accessible in the actual study.
- At $C V_{\text {wR }} 30 \%$ the decision to scale will be wrong in $\sim 50 \%$ of cases.
- If moving away from 30% the chances of a wrong decision decrease and hence, the TIE.
- At high CVs (>43\%) both the scaling cap and the GMR-restriction help to maintain the TIE <0.05).

HVD(P)s - Reference-scaling

Outlook.

- Utopia
- Agencies collect $C V_{\text {wR }}$ from submitted studies. Pool them, adjust for designs / degrees of freedom. The EMA publishes a fixed acceptance range in the product-specific guidance. No need for replicate studies any more. $2 \times 2 \times 2$ crossovers evaluated by ABE would be sufficient.
- Halfbaked
- Hope [sic] that e.g., Bonferroni preserves the consumer risk. Still apply ABEL, but with a $95 \% \mathrm{Cl}(\alpha 0.025)$.
- Drawback: Loss of power, substantial increase in sample sizes.
- Proposal
- Iteratively adjust α based on the study's $\mathrm{CV}_{\text {wR }}$ and sample size in such a way that the consumer risk is preserved (Labes/Schütz 2016).

ABEL (iteratively adjusted α)

Previous example

- Algorithm
- Assess the TIE for the nominal $\alpha 0.05$.
- If the TIE ≤ 0.05, stop.
- Otherwise adjust α (downwards) until the $\mathrm{TIE}=0.05$.
- At CV wR 30\% (dependent on the sample size) $\alpha_{a d j}$ is 0.0273 - 0.0300; \rightarrow use a $94.00-94.54 \% \mathrm{Cl}$.

ABEL（iteratively adjusted a）

Potential impact on the sample size．

－Example：RTRT｜TRTR，$\theta_{0} 0.90$ ，target power 0．80．
－Moderate in the critical region（一 一）．
－$C V_{\text {wR }} 30 \%$ ： $36 \rightarrow 42$（＋17\％）；
$-C V_{w R} 35 \%: 34 \rightarrow 38$（＋12\％）；
$-\mathrm{CV}_{\text {wR }} 40 \%: 30 \rightarrow 32(+7 \%)$ ．
－None outside（一）．

ABEL (iteratively adjusted a)

Example (RTRT | TRTR, expected $\mathrm{CV}_{\text {wR }} 35 \%, \theta_{0} 0.90$, target power 0.80); R package PowerTOST ($\geq 1.3-3$).

- Estimate the sample size.

```
sampleN.scABEL(CV=0.35, theta0=0.90, targetpower=0.80, design="2x2x4",
                                    details=FALSE, print=FALSE)[["Sample size"]]
[1] 34
```

- Estimate the empiric TIE for this study.

```
UL <- scABEL(CV=0.35)[["upper"]] # scaled limit (1.2948 for CVwR 0.35)
power.scABEL(CV=0.35, theta0=UL, n=34, design="2x2x4", nsims=1e6)
[1] 0.065566
```

- Iteratively adjust α.

```
scABEL.ad(CV=0.35, n=34, design="2x2x4")
+++++++++++ scaled (widened) ABEL ++++++++++++
    iteratively adjusted alpha
```

CVwR 0.35, n(i) 17|17 (N 34)
Nomina1 a7pha : 0.05
Null (true) ratio : 0.9000
Regulatory settings : EMA (ABEL)
Empiric TIE for alpha 0.0500 : 0.06557
Power for theta0 $0.900: 0.812$
Iteratively adjusted a7pha :0.03630
Empiric TIE for adjusted alpha: 0.05000
Power for theta0 0.900 : 0.773

ABEL (iteratively adjusted a)

- Optionally compensate for the loss in power ($0.812 \rightarrow 0.773$) by increasing the sample size:

```
    sampleN.scABEL.ad(CV=0.35, theta0=0.90, targetpower=0.80, design="2x2x4")
    +++++++++++ scaled (widened) ABEL ++++++++++++
        Sample size estimation
    for iteratively adjusted alpha
    Study design: 2x2x4 (RTRT|TRTR)
    Expected CVwR 0.35
    Nominal alpha : 0.05
    Nul1 (true) ratio : 0.9000
    Target power : 0.8
    Regulatory settings: EMA (ABEL)
    Switching CVwR : 30%
    Regu7atory constant: 0.760
    Expanded limits : 0.7723...1.2948
    Upper scaling cap : CVwR 0.5
    PE constraints : 0.8000...1.2500
    n 38, adj. alpha: 0.03610 (power 0.8100), TIE: 0.05000
- n 34 }->38(+12%), power 0.773 ->0.810, \alphaadj 0.0363 \longrightarrow0.0361
```


Side Effect

Allowing ABEL only for $\mathrm{C}_{\text {max }}$.

- Some drugs show high variability in AUC as well.
- Since in such a case the sample size will be mandated by AUC, products with high deviations in $C_{\text {max }}$ will be approved.
- Example: $C V_{\text {wR }} 90 \%\left(C_{m a x}\right), 60 \%(A U C)$, $\theta_{0} 0.90$, target power $80 \% \rightarrow$ the study is 'overpowered' for $\mathrm{C}_{\text {max }}$ ' $C_{\text {max }}$-GMRs of [0.846-1.183] will pass $B E$. Really desirable?
- With the FDA's RSABE the study could be performed in only 34 subjects...

Inflation of the Type I Error in Referencescaled Average Bioequivalence

Thank You!
 Open Questions?

Helmut Schütz
BEBAC
Consultancy Services for
Bioequivalence and Bioavailability Studies
1070 Vienna, Austria
helmut.schuetz@bebac.at

To bear in Remembrance...

The fundamental cause of trouble in the world today is that the stupid are cocksure while the intelligent are full of doubt.

100% of all disasters are failures of design, not analysis.

```
Ronald G. Marks
```

My definition of an expert in any field is a person who knows enough about what's really going on to be scared.

Phillip J. Plauger

Backup

Example for the FDA's RSABE

- RTRT|TRTR
sample size 18-96
CV ${ }_{\text {wR }}$ 20\% - 60\%
- TIE max 0.2245 .
- Relative increase of the consumer risk 349\%!
- TIE more dependent on the sample size than in ABEL.
- However, no inflation of the TIE for $\mathrm{CV}_{\text {wR }}>30 \%$; RSABE is very conservative for 'true' HVD(P)s.

Backup

FDA's desired consumer risk model (Davit et al. 2012)

- Previous example
- TIE assessed not at the scaled limits but
- at 1.25 if $C V_{w R} \leq 25.4 \%$ or
- at $\mathrm{e}^{0.893 \cdot \sigma_{W R}}$ otherwise.
- $\mathrm{TIE}_{\max } 0.0668$.
- Lászlo Endrényi: "Hocus pocus!"

References

Schuirmann DJ. A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability.
J Pharmacokinet Biopharm. 1987; 15(6): 657-80.
Tóthfalusi L et al. Evaluation of the Bioequivalence of Highly-Variable Drugs and Drug Products. Pharm Res. 2001;18(6): 728-33.
Chow S-C, Shao J, Wang H. Individual bioequivalence testing under 2×3 designs. Stat Med. 2002; 21(5): 629-48. DOI 10.1002/sim. 1056
Tóthfalusi L, Endrényi L. Limits for the Scaled Average Bioequiva-lence of Highly Variable Drugs and Drug Products. Pharm Res. 2003; 20(3): 382-9.
Willavize SA, Morgenthien EA. Comparison of models for average bioequivalence in replicated crossover designs. Pharm Stat. 2006; 5(3): 201-11. DOI 10.1002/pst.212
Wolfsegger MJ, Jaki T. Simultaneous confidence intervals by iteratively adjusted alpha for relative effects in the one-way layout. Stat Comput. 2006; 16(1): 15-23. DOI 10.1007/s11222-006-5197-1
Endrényi L, Tóthfalusi L. Regulatory Conditions for the Determination of Bioequivalence of Highly Variable Drugs. J Pharm Pharmaceut Sci. 2009; 12(1): 138-49.
Tóthfalusi L, Endrényi L, García-Arieta A. Evaluation of Bioequivalence for Highly Variable Drugs with Scaled Average Bioequivalence. Clin Pharmacokinet. 2009; 48(11): 725-43. DOI 10.2165/11318040-000000000-00000
European Medicines Agency, CHMP. Guideline on the Investigation of Bioequivalence. London; 2010 Jan 20.
http://www.ema.europa.eu/docs/en GB/document library/Scientific guideline/2010/ 01/WC500070039.pdf
Tóthfalusi L, Endrényi L. Sample Sizes for Designing Bioequivalence Studies for Highly Variable Drugs. J Pharm Pharmaceut Sci. 2011; 15(1): 73-84.
Davit BM et al. Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration. AAPS J. 2012; 14(4): 915-24. DOI 10.1208/s12248-012-9406-x
Patterson SD, Jones B. Viewpoint: observations on scaled average bioequivalence. Pharmaceut Stat. 2012; 11(1): 1-7. DOI 10.1002/pst. 498
Labes D. RSABE/ABEL: ‘alpha' of scaled ABE? In: Bioequivalence and Bioavailability Forum [Internet]. Vienna: BEBAC; 2013 Mar 15.
http://forum.bebac.at/mix_entry.php?id=10202

European Medicines Agency, CHMP. Questions \& Answers: positions on specific questions addressed to the Pharmacokinetics Working Party (PKWP). London; 2015 Nov 19.
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/ 09/WC500002963.pdf
Wonnemann M, Frömke C, Koch A. Inflation of the Type I Error: Investigations on Regulatory Recommendations for Bioequivalence of Highly Variable Drugs. Pharm Res. 2015; 32(1): 135-43. DOI 10.1007/s11095-014-1450-z
Labes D, Schütz H, Lang B. PowerTOST: Power and Sample size based on Two OneSided t-Tests (TOST) for (Bio)Equivalence Studies. R package version 1.4-2. 2016. https://cran.r-project.org/package=PowerTOST
Muñoz J, Daniel Alcaide D, Ocaña J. Consumer's risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs. Stat Med. 2016; 35(12): 1933-43. DOI 10.1002/sim. 6834
Labes D, Schütz H. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control. Pharm Res. Epub ahead of print: 1 August 2016. DOI 10.1007/s11095-016-2006-1

