

Helmut Schütz

Wikimedia Commons • 2004 Arnaud Gaillard • Creative Commons Attribution-ShareAlike 1.0 Generic

Validated hardware?

Pentium FDIV bug (1993).

- Flaw in the x86 assembly language floating point divison.
 - Example

$$\frac{4,195,835}{3,145,727} = 1.333739068902037589$$
$$\frac{4,195,835}{3,145,727} = 1.333820449136241002$$

Costs for replacement: \$475 million.

nsicht	<u>B</u> earl	beiten	1						
	1.3	33382	2044	9136	2410	0247	7328	7701	.062
Do	g (Rad	0	Grad	МС	MR	MS	M+	M-
	Inv	In	1	1	+	CE	С	±	1
Int	sinh	sin	x ²	nl	7	8	9	1	96
dms	cosh	cos	xy.	Vx.	4	5	6		1/x
m	tanh	tan	x3	₹x	1	2	3	978	
F-E	Exp	Mod	log	10×		0		+	=

Validated software?

General Principles of Software Validation (FDA 2002).

- Section 2.4: Regulatory Requirements for Software Validation
 - 242 FDA Medical Device Recalls attributed to software failures (1992 – 1998).
 - 192 (79%) caused by software defects that were introduced
 - when *changes* were made to the software after its initial production and distribution.

Spreadsheets?

Radio Yerevan Jokes.

- Radio Yerevan was asked:
 Is it possible to validate M\$ Excel?
- Radio Yerevan anwered:

 In principle yes, but only if you buy the source code from Mr Gates first.

EMA CPMP/CHMP/EWP (Q&A 2011–2015)

 Results obtained by alternative, validated statistical programs are also acceptable except spreadsheets because outputs of spreadsheets are not suitable for secondary assessment.

Esch et al. 2010. Good Laboratory Practice (GLP) - Guidelines for the Development and Validation of Spreadsheets. doi:10.1002/qaj.466.

Spreadsheets?

MS Excel 1985 - 2002.

M\$ Article 828888: 'You can expect that for most users, such round off errors are not likely to be troubling in practice.'

	Α	В	С	D	E	F
1	0	formula (A)	100,000,000	formula (C)	1	formula (E)
2	-1	=A\$1-1	99,999,999	=C\$1-1	0.9999999	=E\$1-0.0000001
3	±0	=A\$1	100,000,000	=C\$1	1.00000000	=E\$1
4	+1	=A\$1+1	100,000,001	=C\$1+1	1.0000001	=E\$1+0.0000001
5	1	=STDEV(A2:A4)	0	=STDEV(C2:C4)	0	=STDEV(E2:E4)

In calculating the 90% CI we need the *t*-distribution (for α 0.05 and the residual degrees of freedom).

- Example: $t_{0.05, 22} = 1.717$.
- However, in MS Excel <2007:

	Α	В	C	D	E	F	G	Н
1	α	df	t	formula (C)	t	workaround (E)	t	Excel 2007+
2	0.05	22	2.074	=TINV(A2, B2)	1.717	=TINV(2*A2, B2)	1.717	=T.INV(A2, B2)

Open source software?

In principle yes – if it's validated, why not?

- Since the source code is accessible, even a 'white box' validation –
 which no (!) off-the-shelf software offers is possible.
 - The FDA regularly uses R in M&S itself
 (but as an agency is not obliged to validate anything …).
 - New releases/updates more frequent than commercial SW.

R & packages: 3 – 4 / year.

Defects in packages: Generally corrected within one week.

— R-packages relevant for bioequivalence:

Randomization: randomizeBE (2017)

– NCA/BE: bear (2017)

Power and sample size: PowerTOST (2017)

– Two-Stage Designs: Power2Stage (2017)

The R Foundation for Statistical Computing. Vienna; 2014: R: Regulatory Compliance and Validation Issues. http://www.r-project.org/doc/R-FDA.pdf.

Alterations of data possible?

Example: Phoenix/WinNonlin

Alterations of data possible?

Example: Phoenix/WinNonlin

Always select the Core Output (off by default)

Alterations of data possible?

Example: Phoenix/WinNonlin

```
4/09/2015
                                                        Date:
                                                        Time:
                                                                  17:20:50
                WINNONLIN LINEAR MIXED EFFECTS MODELING / BIOEOUIVALENCE
                                        6.4.0.768
                                 Core Version 30Jan2014
    Model Specification and User Settings
10
           Dependent variable : Data
11
                    Transform : LN
12
                  Fixed terms : int+Sequence+Subject(Sequence)+Period+Formulation
13
        Singularity tolerance :
14
        Denominator df option : satterthwaite
```

Only in the Core Output you get a timestamp of the evaluation. Avoid fancy Excel- or Word-Export options (if possible).

Old hats ...

Parallel Groups: Example

Evaluation (modified data set)

Program	equal variances	unequal variances
R 2.5.0 (2007)	81.21% – 190.41%	76.36% – 202.51%
NCSS 2001 (2001)	81.21% – 190.41%	76.36% – 202.51%

- Inflated α-risk in 'conventional' t-test (naive pooling) is reflected in a tighter confidence interval.
- Preliminary testing for equality in variances is flawed*) and should be avoided (FDA).
- Approximations (e.g., Satterthwaite, Aspin-Welch, Howe, Milliken-Johnson) are currently not implemented in packages 'specialized' in BE (WinNonlin, Kinetica, EquivTest/PK)!

Surprise?

*) Moser, B.K. and Stevens, G.R.; Homogeneity of variance in the two-sample means test. Amer. Statist. 46, 19-21 (1992)

informa life sciences

Dissolution Testing, Bioavailability & Bioequivalence | Budapest, 24 May 2007

38

... making it to the health news

Reference data sets in BE

Different software (general purpose, specialized in BE, commercial and open source), 2×2×2 cross-over.

DS	EquivTest		Kinetica		SAS		WinNonlin		R	
Α	90.76	99.62	90.76	99.62	90.76	99.62	90.76	99.62	90.76	99.62
В	51.45	98.26	51.45	98.26	51.45	98.26	51.45	98.26	51.45	98.26
C	39.41	87.03	44.91	99.31	39.41	87.03	39.41	87.03	39.41	87.03
D	51.45	98.26	51.45	98.26	51.45	98.26	51.45	98.26	51.45	98.26
Ε	55.71	151.37	55.71	151.37	55.71	151.37	55.71	151.37	55.71	151.37
F	93.37	106.86	93.37	106.86	93.37	106.86	93.37	106.86	93.37	106.86
G	88.46	95.99	88.46	95.99	88.46	95.99	88.46	95.99	88.46	95.99
Н	86.81	100.55	107.80	115.85	86.81	100.55	86.81	100.55	86.81	100.55

A, B, D – G Balanced sequences
$$(n_{TR} = n_{TR})$$

C, H Imbalanced sequences $(n_{TR} \neq n_{RT})$

Schütz H, Labes D, Fuglsang A. 2014. Reference Datasets for 2-Treatment, 2-Sequence, 2-Period Bioequivalence Studies. doi:10.1208/s12248-014-9661-0.

Moralez-Acelay et al. 2015. On the Incorrect Statistical Calculations of the Kinetica Software Package in Imbalanced Designs. doi:10.1208/s12248-015-9749-1

Reference data sets in BE

Two-group parallel (conventional *t*-test).

DS	Equi	vTest	Kind	etica	SA	AS	WinN	lonlin	00	Calc	F	₹
1	27.15	86.94	27.15	86.94	27.15	86.94	27.15	86.94	27.15	86.94	27.15	86.94
2	18.26	96.59	15.76	119.00	18.26	96.59	18.26	96.59	18.26	96.59	18.26	96.59
3	26.35	415.71	26.35	415.71	26.35	415.71	26.35	415.71	26.35	415.71	26.35	415.71
4	38.60	134.21	38.60	134.21	38.60	134.21	38.60	134.21	38.60	134.21	38.60	134.21
5	106.44	112.10	106.39	112.44	106.44	112.10	106.44	112.10	106.44	112.10	106.44	112.10
6	91.85	115.78	92.07	115.50	91.85	115.78	91.85	115.78	91.85	115.78	91.85	115.78
7	106.86	126.49	104.30	129.32	106.86	126.49	106.86	126.49	106.86	126.49	106.86	126.49
8	105.79	113.49	105.79	113.49	105.79	113.49	105.79	113.49	105.79	113.49	105.79	113.49
9	103.80	120.61	103.80	120.61	103.80	120.61	103.80	120.61	103.80	120.61	103.80	120.61
10	107.20	126.99	104.59	130.16	107.20	126.99	107.20	126.99	107.20	126.99	107.20	126.99
11	7.83	17.38	6.98	19.51	7.83	17.38	7.83	17.38	7.83	17.38	7.83	17.38

1, 3, 4, 8, 9 Equal group sizes $(n_T = n_R)$ 2, 5 – 7, 10, 11 Unequal group sizes $(n_T \neq n_R)$

Fuglsang A, Schütz H, Labes D. 2015. Reference Datasets for Bioequivalence Trials in a Two-Group Parallel Design. doi:10.1208/s12248-014-9704-6.

Reference data sets in BE

Two-group parallel (Welch's test).

DS	SAS		WinNonlin*		00	Calc	R		
1	26.78	88.14	26.78	88.14	26.78	88.14	26.78	88.14	
2	23.71	74.38	23.71	74.38	23.71	74.38	23.71	74.38	
3	24.40	449.08	24.40	449.08	24.40	449.08	24.40	449.08	
4	38.05	136.15	38.05	136.15	38.05	136.15	38.05	136.15	
5	106.44	112.10	106.44	112.10	106.44	112.10	106.44	112.10	
6	91.84	115.79	91.84	115.79	91.84	115.79	91.84	115.79	
7	97.38	138.51	N	A	97.38	138.51	97.38	138.51	
8	105.79	113.49	N	IA	105.79	113.49	105.79	113.49	
9	103.80	120.61	NA		103.80	120.61	103.80	120.61	
10	97.82	139.17	NA		97.82	139.17	97.82	139.17	
_11	6.30	21.60	N	Α	6.30	21.60	6.30	21.60	

^{*} Workaround required in WinNonlin; limited to 1,000 subjects / group.

Welch's test not implemented in EquivTest and Kinetica.

Fuglsang A, Schütz H, Labes D. 2015. Reference Datasets for Bioequivalence Trials in a Two-Group Parallel Design. doi:10.1208/s12248-014-9704-6.

^{1, 3, 4, 8, 9} Equal group sizes $(n_T = n_R)$ 2, 5 – 7, 10, 11 Unequal group sizes $(n_T \neq n_R)$

Likely cause of Kinetica's defects

2×2×2 cross-over

Calculation of the confidence interval (CI):

$$CI = e^{\log(\overline{x}_T - \overline{x}_R) \pm t_{1-\alpha, n_{RT} + n_{TR} - 2} \sqrt{\frac{MSE}{2} \left(\frac{1}{n_{TR}} + \frac{1}{n_{RT}}\right)}}$$

• Only if sequences are balanced $(n_{TR} = n_{TR})$ a simplified formula based on the total sample size N is correct:

$$CI = e^{\log(\overline{x}_T - \overline{x}_R) \pm t_{\alpha, n_{RT} + n_{TR} - 2} \sqrt{\frac{2MSE}{N}}}$$

Likely cause of Kinetica's defects

Two-group parallel

Calculation of the confidence interval (CI):

$$CI = e^{\log(\overline{x}_T - \overline{x}_R) \pm t_{1-\alpha, n_T + n_R - 2} \sqrt{\frac{MSE}{2} \left(\frac{1}{n_T} + \frac{1}{n_R}\right)}}$$

 According to the manual Kinetica uses a 'simplified' formula – but the sample size of subjects receiving the reference [sic] treatment in the denominator:

$$CI = e^{\log(\overline{x}_T - \overline{x}_R) \pm t_{1-\alpha, n_T + n_R - 2} \sqrt{\frac{2MSE}{n_R}}}$$

Validation and Compliance Issues

Thank You! Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at