

Helmut Schütz

kimedia Commons • 2008 • Thomas Wolf • CCA-ShareAlike 🤅

What to do if you have more studies to perform.

- Suggestions
 - Start with the most difficult one (i.e., the one which most likely fails) first!
 - Variability in fed state commonly higher than in fasting state.
 - Due to potential different food effects of T and R the GMR may be worse.
 - » Hence, fed study → fasting study.
 - MR: If the GL allows waiving the MD-study, perform the SD-study and assess the additional PK metrics (e.g., early and terminal pAUCs) for BE.
 - If you fail these PK metrics (but still pass C_{max} , AUC_{0-t} , $AUC_{0-\infty}$) perform the MD-study.
 - If you have performed the SD- and MD-study and pass required PK metrics in both, the failing pAUCs in the SD-study are 'overruled'.
 - Since the purpose of pAUCs was only to justify waiving the MD-study (which was later performed) there is no reason for an assessor not accepting the application.

What to do if you have more studies to perform.

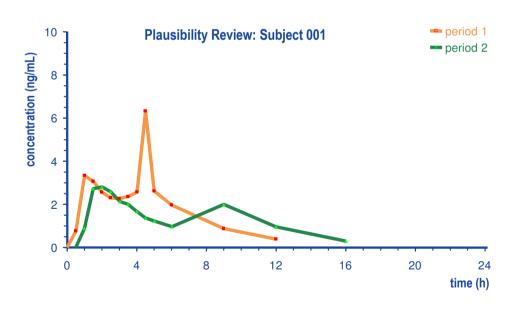
- Suggestions
 - Variability in steady state is generally lower than after a single dose.
 - Estimate the CV from the SD-study.
 - Perform the MD-study in a Two-Stage-Design where the size of the first stage is ~75% of a fixed sample design.
 - » Reasonably high chance to pass already in the first stage (due to lower CV).
 - » If the CV is higher (unlikely!) you still get a second chance.
 - If ever possible try to perform studies in the same CRO.
 - If there are problems with the clincial capacity (→ different CROs), employ still the same bioanalytical CRO.
 - » If you face capacity problems in bioanalytics (→ different CROs) make sure (!) that the same validated method is used.
 - » If ever possible,
 - (a) assure that the same type of instruments are used and
 - (b) run a cross-validation between sites.

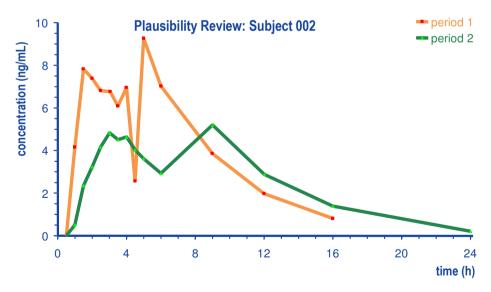
Large studies – lacking capacity of the clinical site.

- Suggestions
 - Find a larger CRO even if more expensive!
 - If you have to split the estimated sample size into groups:
 - Dose subjects within a limited time frame, e.g., the groups only days apart (sometimes called the 'staggered approach').

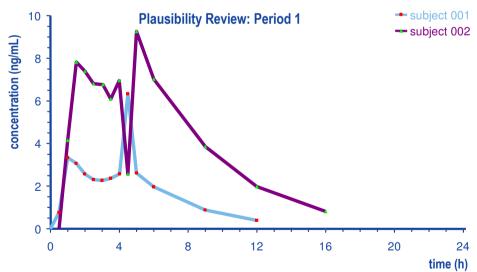
```
Group I: period 1, Mo – We \rightarrow washout \rightarrow period 2, Mo – We Group II: period 1, Th – Sa \rightarrow washout \rightarrow period 2, Th – Sa
```

- Do not split groups into equal sizes.
 Perform at least one in the maximum capacity of the clinical site.
- Some jurisdictions (Russian MoH and Saudi FDA always, FDA regularly, EMA sometimes) require a statistical test for the 'group-by-treatment interaction'.
 - » If this test is significant at the 0.1 level, one is *not* allowed to pool the data and is only free to demonstrate BE in the *largest* group.


Large studies – lacking capacity of the clinical site.


- Example
 - CV of AUC 30% (no scaling allowed), GMR 0.90, target power 90%, $2\times2\times4$ (reference-scaling of C_{max} intended). Estimated sample size 54.
 - Maximum capacity 24 beds.
 - Option 1: Equal group sizes (3×18) .
 - Option 2a: Two groups with the maximum size (24), the remaining one 6.
 - Option 2b: One group 24, the remaing ones as balanced as possible (16 | 14).
 - Let us assume that there are no drop-outs and pooling is not allowed (significant group-by-treatment interaction). Expected power:
 - Option 1: 51% in each of the groups.
 - Option 2a: 62% in the two largest groups (n = 24 each).
 - Option 2b: 62% in the largest group.
 - Which one would you prefer and why?

Sample mix-up.


Very large CRO (study performed in 2008). Common drug, biphasic
 MR formulations, pilot study (suboptimal sampling between 6 – 14 h).

- Barcode-system out of order in the first period of the study.
- No bail-out procedure (e.g., four eyes principle).
- Suspected sample mix-up at 4.5 h.
- Concentrations confirmed.
- No deviation documented in clinical phase.
- Drug has very low intrasubject CV ($AUC \le 10\%$, C_{max} 10–15%) and high intersubject CV (>50%) due to polymorphism.

- Pivotal studies are generally performed in only 14 subjects.
- A single mixed-up sample close to t_{max} could ruin an entire study.

- We tried to confirm the mix-up by comparing lab-values of the suspect samples (and each of the two neighbouring ones in each profile).
 - Anticoagulant was citrate for GC/MS.
 - With this anticoagulant the analyzer was validated only for γ -GT and albumine.

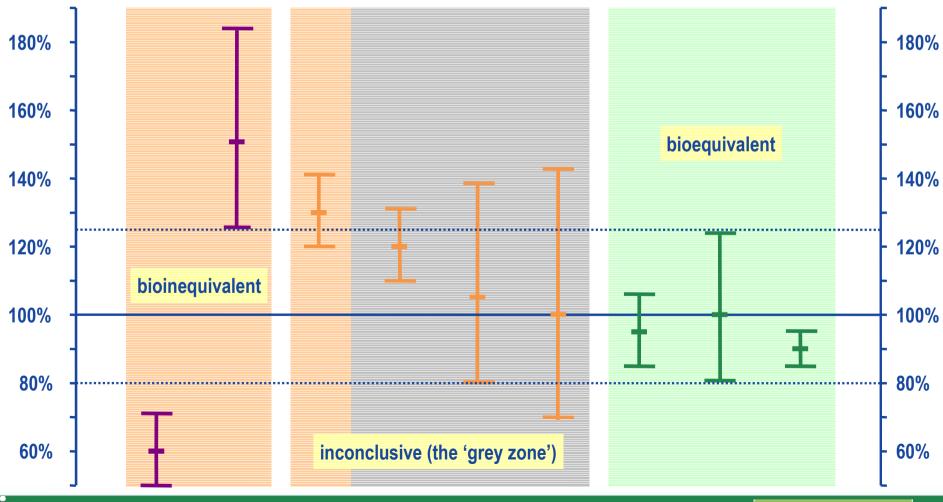
subject	time (h)	analyte (ng/mL)	γ-GT (U/L)	albumine (g/dL)
001	4.0	2.572	13	3.8
001	4.5	6.330	9	3.5
001	5.0	2.615	14	3.9
002	4.0	6.956	9	3.4
002	4.5	2.561	14	4.0
002	5.0	9.262	8	3.4

- γ-GT and albumine showed a similar pattern like the analyte.
 - Mean values of γ -GT in the pre- and post-study lab exams were 14 U/L (# 001) and 9 U/L (# 002). Means of albumine were 3.9 g/dL (# 001) and 3.4 g/dL (# 002).
 - Luckily subjects differed in their values. The pilot study was only supportive...

- Before the current EMA GLs a blinded plausibility review was acceptable (and still is in many regulations like the FDA).
- According to the current EMA GLs re-analyzing of samples is not permitted.
 - Gerald Beuerle of TEVA/ratiopharm (joint EGA/EMA workshop, London 2010)
 presented an example were due to a single mix-up a study would pass.
 - » The study would *fail* to show BE if the results were exchanged.
 - » The study would fail to show BE if the two subjects were excluded.
 - » Panelists of the EMA's PKWP confirmed that either procedure is not acceptable and the values have to be used as the are (i.e., the study would pass).
 - Helmut Schütz: 'The EMA is a Serious Risk to Public Health!'
- At the 2nd International Conference of the Global Bioequivalence Harmonization Initiative (Rockville, 15 16 September 2016) Session IV was devoted to the issue (*Exclusion of PK Data in the Assessment of IR and MR Products*).

- Lessons learned:
 - The most critical phase is the transfer from centrifuged blood sample tubes to the vials containing the sample matrix used in bioanalytics.
 - When we installed a barcode-system in 1991, the rate of sample mix-ups dropped from 0.2% to zero.
 - A bail-out procedure must be in place (four eyes principle), an SOP at hand and followed by the personel!
 - I once audited a CRO where the SOP mandated that the centifuged samples and vials are scanned one after the other – immediately after the transfer.
 - The technician took four Eppendorf vials (centrifuged blood samples) in his left hand and scanned them.
 - » Then he scanned four empty sample vials.
 - » Next he pipetted the four samples one after the other.
 - "Why are you do this in such a way?" –
 "It saves time, and four vials fit nicely in my hand."

'Lack' of statistical power


Sometimes a properly planned study fails by pure chance.

- Power is fixed by design (in the sample size estimation)!
- It is unavoidable, that the producer's risk (probability of Type I Error, where $\beta = 1$ power) hits in actual studies.
 - If studies are planned with 80% power,
 one out of five studies will fail –
 even if products are bioequivalent.
 - Post hoc (aka a posteriori) power is a flawed statistical concept.
 - Reporting post hoc power is a bad habit and should be abandoned.
 - Either a study has demonstrated bioequivalence or not.
 - » As 'high' power does not further support the claim of already demonstrated BE,
 - » 'low' power does not *invalidate* the conclusion of BE!
- The only realistic remedy for a failed study is to repeat it in a larger sample size – if the PE is promising.

'Lack' of statistical power?

Some studies: Point estimates and their 90% Cls.

Are Add-on studies acceptable?

Add-on Designs

- In an Add-on Design (AOD) an initial group of subjects is treated and –
 if the result is inclusive (i.e., although the point estimate is within the
 BE-limits, the CI is not)
 - an additional group of subjects can be recruited and
 - the assessment of bioequivalence repeated in the pooled dataset.
- General conditions:
 - The intention to perform an AOD has to be stated in the protocol.
 - The same batches of products and the same clinical and bioanalytical methods have to be employed in both groups.
 - Additional requirements were stated in some jurisdictions.
- Somewhat popular in the 1990s and reflected in regulatory documents (HC 1992, NZ 1997) and later abandoned. Currently still in Argentina (2006), Korea (2008), Japan (2012), Mexico (2013).

Are Add-on studies acceptable?

Add-on Designs

- Statistically questionable
 - Repeated testing without adjusting the level of the tests will inflate the Type I Error (patient's risk).
 - If k repeated test are performed at α 0.05, the TIE will approach $1-(1-\alpha)^k$ or 9.75% for two tests.
 - In naïve pooling of data, both the variance will be underestimated and the nominal level of the test will be exceeded.
 - Inflation of the TIE demonstrated in simulations (Potvin et al. 2008, Wonnemann et al. 2015, Schütz 2015).
- Preserving the consumer risk
 - Bonferroni correction (for two tests α 0.025 or a 95% CI) keeps the TIE at \leq 4.94%.
 - Sample size penality compared to a fixed-sample design (20–30% more subjects).
 - n_2 should be ≥ n_1 (Birkett and Day 1994).

Are Add-on studies acceptable?

Add-on Designs

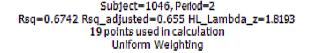
- Only if unavoidable!
 - If you apply in Argentina, Korea, Japan, or Mexico –
 aim for a scientific advice suggesting a Two-Stage Design (Session 4, part I) instead.
 - If you do not succeed:
 - Employ Bonferroni's adjustment (95% confidence interval).
 - Adjust the sample size accordingly.

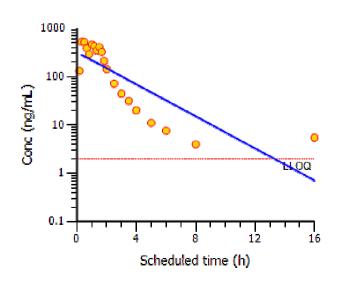
Failing a fed or fasting part of the study

MR products (EMA 2014) and some product-specific guidance by the FDA

- Fasting and fed in the same study in the EMA's approaches 1 and 2.
- Fasting and fed in separate studies (fasting, fed) in the EMA's approach 3 and recommended by the FDA.
- Suggestions
 - Educated guess whether the study failed only by lacking power (too small sample size) or a 'bad' point estimate (slides 11–12).
 - If the PE is promising, repeat the study in a larger sample size.
 - » If fasting/fed was nested in a design (EMA #1 and #2) it will be difficult. If you repeat the entire study due to pure chance the respective other comparision may fail this time due to pure chance.
 - » For EMA #3 and the FDA repeat the respective study.

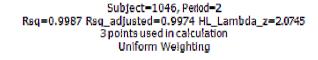
Failing a fed or fasting part of the study

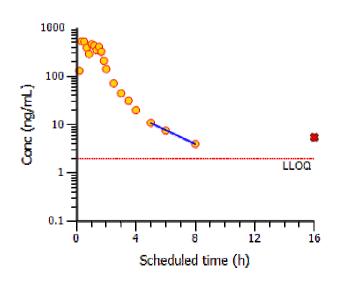

MR products (EMA 2014) and some product-specific guidance by the FDA


- Suggestions
 - If products are inequivalent (CI completely outside the BE-limits) or
 if the PE is not promising (e.g., close to or even outside the BE-limits) modify the
 formulation.
 - » If you did not do that before, consult with an expert in IVIVC and explore new dissolution methods (maybe biorelevant).
 - » Development of candidate formulations with different release charcteristics.
 - » Pilot in vivo studies and development of a discriminatory dissolution method which allows selection of a test formulation which matches the reference in vitro.
 - » Repeat the entire pivotal BE-program.

NCA (estimating λ_z).

- Large CRO (study performed in 2013). 4-period full replicate; the double peak is specific for the formulation.
 - In four cases the last concentration was increasing. The CRO followed EMA's GLs and did not re-analyze samples (PK reason alone not sufficient). Obviously the CRO tried to 'save' the profiles by including more data points...
 - To the right the most extreme case.
 - Two samples (at 10 & 12 h) were BLQ.
 - 5.47 ng/mL (~2.7× LLOQ) at 16 h.
 - The first time point for the estimation of λ_z was t_{max} .

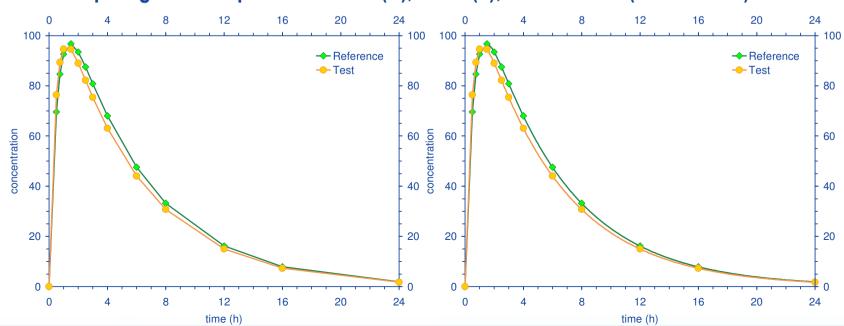




NCA (estimating λ_z).

- What I would do (if an SOP allows that). Two options:
 - Exclude the doubtful value from the estimation of λ_z . Justifications:
 - The estimated half-life of 2.07 h is consistent with the ones of the same subject in the other periods (2.12, 2.00, 2.16 h).
 - » Two values before the doubtful value were BLQ which agrees with the predicted λ_7 .
 - Drop the profile from the AUC comparison, but keep C_{max} (higher variability anyway and referencescaling intended in the protocol).

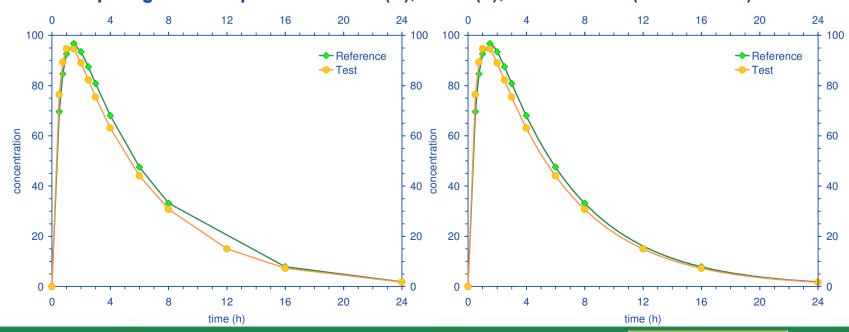
NCA (estimating λ_z).


- Lessons learned:
 - Never solely rely on automatic methods (maximum R^2_{adj}) implemented in software.
 - Visual inspection of the fit (and correction if necessary) recommended (Hauscke et al. 2007, Scheerans et al. 2008).
 - For IR products absorption is essentially complete after two times t_{max} . Hence, $\geq 2 \times t_{max}$ is good starting point to get an unbiased estimate of λ_z (not substantially contaminated by absorption).
 - In WinNonlin 5.3 (Pharsight) and Kinetica 5.0 (Thermo Scientific)
 t_{max} can be included by the automatic method.
 Update the software (Phoenix/WinNonlin ≥6.0) or rule it out in an SOP.
 - Have an SOP in place which allows
 - » visual inspection of fits / correction (mandatory),
 - » exclusion of a subject from the AUC comparison if no reliable fit can be established (good) or
 - » exclusion of data points (much better).

NCA (trapezoidal methods).

- If all samples are available, there is practically no difference between algorithms.
 - Simulated data. AUC 697.8 (Reference), 662.9 (Test), true GMR 95.00%.
 - Linear trapezoidal:

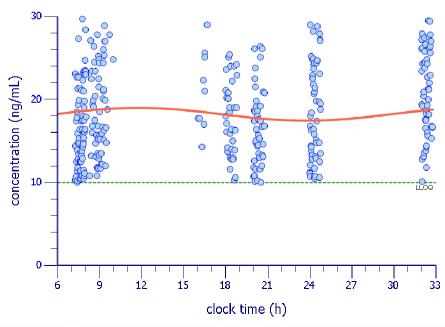
- 707.6 (R), 670.9 (T); *GMR* 94.85% (bias -0.20%).
- Lin-up / log-down trapezoidal: 693.7 (R), 658.0 (T); GMR 94.89% (bias -0.16%).



NCA (trapezoidal methods).

- If a sample is missing (e.g., vial broken in centrifugation), the chosen algorithm matters. 12 h sample (R) removed.
 - Simulated data. AUC_∞ 697.8 (Reference), 662.9 (Test), true GMR 95.00%.
 - Linear trapezoidal:

- 725.1 (R), 670.9 (T); *GMR* 92.53% (bias -2.60%).
- Lin-up / log-down trapezoidal: 693.7 (R), 658.0 (T); GMR 94.89% (bias -0.15%).


NCA (trapezoidal methods).

- Lessons learned:
 - Trapezoidal methods
 - The linear trapezoidal method goes back to the times were we drew profiles on millimeter paper, clipped them, and weighed them on an analytical balance.
 - I never saw anybody using a curve template in order to approximate an exponential decrease. Connecting data points by straight lines was state-of-the-art.
 - With a few exceptions (ethanol, Michaelis-Menten PK) we know [sic] that concentrations decrease exponentially.
 Therefore, the most suitable NCA-method for calculating the AUC is the lin-up / log-down trapezoidal method.
 - Missing samples are not uncommon.
 - Only with the lin-up / log-down trapezoidal method we get unbiased estimates of the AUC.
 - The linear trapezoidal method should be abandoned.

The 'perfect' bioanalytical method.

- Endogenous drug (basal levels BQL to 30 ng/mL; circadian rhythm), average C_{max} 5,400 µg/mL (MR), 26,200 µg/mL (IR), half life 45 min, sampling for 24 hours, method validated for 10 ng/mL to 50 µg/mL.
 - In the estimation of λ_z I had to exclude *all* time points >12 hours since concentrations were consistently increasing.
 - Although the protocol and my
 SOP allowed that, it *looks* fishy.
 - I developed a full-blown PopPK model to explain the diurnal variations in basal levels.
 - Justification accepted by the agency.

The 'perfect' bioanalytical method.

- Lessons learned:
 - Well-intentioned is often the opposite of well done.
 - The bioanalytical method should be validated for the intended use (Session 9).
 - It does not make sense that the LLOQ of the method was 0.19% and 0.04% of C_{max} (after MR and IR, respectively).
 - In later studies
 - the LLOQ was set to 50 ng/mL (i.e., five times higher),
 - sampling performed only up to 12 hours;
 - no more problems with basal levels (below the LLOQ) and increasing concentrations, and
 - the extrapolated fraction of the AUC was still below 1%.

General Hurdles and Pitfalls in BE Studies

Thank You! Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria

helmut.schuetz@bebac.at