





#### Chromatography

- Substances (analytes & interferences) continuously exchange between Mobile and Stationary Phases
  - Different Mechanisms in parallel (solubility, lipophilicity, ionization,...)
  - •Retention influenced by type of Stationary Phase, column lenggth, composition of Mobile Phase (type and % organic modifier, gradient, pH, buffer), temperature, pressure, flow rate,...













# Chromatography







# Orthosilic Acid (H<sub>4</sub>SiO<sub>4</sub>)







# Polysilic Acid







#### C18 Reversed Phase







#### **C8 Reversed Phase**







# **Retention Time and Tailing**



























#### Recommendations

- Capacity factor k' for analytes >2
  - Example:

$$(6.58-1.50)/1.50=3.39$$
  $\checkmark$   $(8.46-1.50)/1.50=4.64$   $\checkmark$ 

- Resolution between two adjacent peaks
  - • $R_s = 2 \times (t_{R_2} t_{R_1}) / (w_1 + w_2)$ Baseline width w not accessible; for a Gaussian [sic] peak  $w \sim 1.699 \times w_{0.5}$  holds.
  - Desirable >2
  - •Example:  $2\times(8.46-6.58)/(0.68+0.83)=5.69$  ✓





#### Recommendations

- Tailing factor  $T_f$  for analytes < 2
  - IUPAC at 10% of peak height:

$$0.72/0.33=2.18$$
 \*

$$0.70/0.32=2.19$$
 ×

Although >2, acceptable for a chiral method where columns show limited 'separation power' in general.

•at 50% of peak height:

$$0.21/0.19=1.11$$

$$0.31/0.18=1.72$$

<2 – avoid IUPAC's method!





#### Recommendations

#### Run times

- The longer, the better the separation but
- Peak heights will decrease (band broadening → worse LLOQ)

#### Run times are <u>de</u>creased by

- Type of stationary phase C18 → C8
- ↓ Column length
- ↑ Particle size 3 µm → 5 µm
- ◆ ↑ Flow rate
- Type of organic modifier in mobile phase CH<sub>3</sub>OH → CH<sub>3</sub>CN
- ↑ % of organic modifier in MP
- ↑ Temperature





# Hurry up!







- Peak 'recognition'
- Automatic vs. manual
- Chromatography Data System (CDS)





- Peak 'recognition'
  - Detector delivers signal at high data rates.
  - Raw signal is bundled to 'peak slices' based on an appropriate time constant.
    - Rule of thumb:  $w_{0.5}$  of the narrowest peak divided by 10–20.
    - 10" peak  $\rightarrow$  aquisition rate of 0.5–1" (60–120 Hz).
  - Peak start and end depends on:
    - Noise threshold
    - Baseline drift (mainly important for gradient elution)
    - Area threshold (peaks below this value are not integrated)





- Peak 'recognition'
  - Peak start and end triggered by:

derivative at each time point.

- Upward-/downward slope detection:
   The data system fits a couple of data points to a function (moving average, polynomial, smoothing spline, Savitzky-Golay, ...) and calculates the first
  - If the derivative is positive and ≥ the threshold
    - → start of peak;
  - if the slope is negative and ≤ the threshold
    - $\rightarrow$  end of peak.





- Peak 'recognition'
  - Peak start and end triggered by:
    - Upward-/downward slope detection:
       For a Gaussian peak upward- / downward thresholds are the same, but in chromatography peaks are always asymmetrical.
      - Some data systems correct for that by using more slices if the slope is negative or even change to a different fitting algorithm.





#### Peak 'recognition'







- Automatic vs. manual
  - Integration parameters are saved in the CDS' method and work in the background
  - The automatic integration may fail:
    - Mainly for small peaks close to the LLOQ
    - But also (rarely) for high peaks, if a series of positive random noise triggers an 'end of peak' too early or negative random noise draws the baseline too late.
    - There is no 'correct' integration for any given peak!
       Identical raw data most likely will result in different values if evaluated by another CDS.





- Automatic vs. manual
  - All chromatograms should be reviewed and the integration corrected if necessary
  - The review has to be done before concentrations are calculated.
    - Changing integration of a peak in order to force a calibrator / QC towards the expected value (*e.g.*, make a batch valid which would be rejected otherwise) or a pre-dose concentration <5% C<sub>max</sub> would be clear evidence of fraud.





- Automatic vs. manual
  - Do not try to fool inspectors!







- Automatic vs. manual
  - Review and manual correction acceptable according to current GLs (FDA 2001, EMA 2011)
    - SOP in place
    - Consistently across the study's chromatograms
    - Report which chromatograms were reintegrated (why, by whom, when – all the usual data needed for an audit trail).





- Automatic vs. manual
  - Example: LC/MS-MS, risperidone, protein precipitation, dilution factor 8, API 4000, software Analyst 1.4.1; 1 ng/mL and 0.1 ng/mL (at LLOQ)

| Integration method                  | 1 ng/mL               | 0.1 ng/mL               |
|-------------------------------------|-----------------------|-------------------------|
|                                     | CV (n=10)             |                         |
| automated (smoothing 1, bunching 2) | 6.5%                  | 15.1%                   |
| manual correction (one analyst)     | 6.3%                  | 11.1%                   |
| manual correction (ten analysts)    | 5.2%<br>(3.8% – 6.8%) | 12.8%<br>(6.9% – 16.0%) |

**H Kirchherr**, *Data Evaluation in LC-MS*In: H-J Kuss and S Kromidas (eds.), Quantification in LC and GC, Wiley, p243-259 (2009)





- Automatic vs. manual
  - Some analyst are afraid of getting problems in an inspection – believing automatic integration is the 'gold standard' and manual integration some kind of data manipulation.
    - Example:
       Fairly recent (06/2010) BE study, active /-enantiomer
       vs. racemate, LC/MS-MS; chromatograms of
      - high calibration standard
      - low QC sample





#### Automatic vs. manual

Mistake 1
Setting the integration method to ignore the first peak (tangential baseline instead of vertical drop).
All peak areas are systematically underestimated.

#### Mistake 2

Relying upon automatic integration (yellow area), which failed due to random positive noise. Even a correction according to the chosen method (ignoring the first peak – red line) would be better. I would suggest a vertical drop (green lines).





Automatic vs. manual

 It would be possible to calculate peak areas by deconvolution. Not available in current CDS!

Only supported by Merck / Hitachi's mid-90s D-7000 HPLC System Manager (HSM v4.1) or external software (PeakFIT from Systat).







- Chromatography Data System (CDS)
  - Bundled with chromatograph / MS
    - Xcalibur<sup>®</sup> (Thermo Scientific)
    - Analyst® (Applied Biosystems/MDS Sciex)
    - EZChrome Elite (Agilent Technologies)
    - Empower<sup>™</sup> (Waters)
    - Chromeleon® (Dionex)
    - LabSolutions (Shimadzu)
  - Commercial, vendor independent
    - PowerChrom<sup>®</sup> (eDAQ)
  - Cross-platform freeware
    - ezDataPowerChrom® (chemilab.net)
  - Deconvolution
    - PeakFIT® (Systat)





- Chromatography Data System (CDS)
  - Important points
    - Audit Trail?
    - Data transfer to LIMS?
    - Data format: Preferable not only the integration parameters, but the raw peak slices are stored.
      - ANDI/netCDF (AIA) Chromatography Data Interchange Format (ASTM standard E1947-98)
      - Last resort: CSV (Character Separated Variables)
    - FDA 21 CFR Part 11 compliant (rarely; ask!)
    - If possible data should not be stored only at the instrument's PC, but copied to a central location for secured backup.
    - Provide the sponsor a DVD with raw data files.





# Thank You! Integration in Chromatography Open Questions?



Helmut Schütz

BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

