

NCA vs. PK Modeling

- Noncompartmental methods do not rely on a pharmacokinetic (=compartmental) model
- Also called SHAM (Shape, Height, Area, Moments)
 - Metrics (plasma)
 - Extent of absorption (EU...), total exposure (US): AUC (Area Under the Curve)
 - Rate of absorption (EU…), peak exposure (US): C_{max}
 - t_{max} (EU…)
 - Early exposure (US, CAN): AUC_{tmax}; partial AUC truncated at population (CAN: subject's) t_{max} of the reference
 - Others: C_{min}, Fluctuation, MRT, Occupancy time, t_{lag},...

NCA vs. PK Modeling

- Noncompartmental methods (cont'd)
 - Metrics (urine)
 - Extent of absorption (EU...), total exposure (US): Ae_t (cumulative amount excreted) rarely extrapolated to t=∞
 - Rate of absorption, peak exposure (US):

 ΔAe_{max}, tΔAe_{max}
 - EU: C_{max}, t_{max} from plasma!

NCA vs. PK Modeling

- Pharmacokinetic models
 - Useful for understanding the drug/formulation
 - Study design of BA/BE!
 - Drawbacks:
 - Almost impossible to validate (fine-tuning of side conditions, weighting schemes, software, ...)
 - Still a mixture of art and science.
 - Impossible to recalculate any given dataset using different software – sometimes even different versions of the same software!
 - Not acceptable for evaluation of BA/BE studies!

- Single dose
 - Calculation of Moments of Curve (AUC, MRT)
 - Linear trapezoidal rule, loglinear trapezoidal rule, or combination (lin-up, log-down).
 - Calculation of half life $(t_{1/2})$ from elimination rate (λ_z)
 - Unweighted (!) log-linear regression
 - If necessary, extrapolation from time point of last quantified concentration to infinity

$$AUC_{\infty} = AUC_t + \frac{C_t}{\hat{\lambda}_z}$$
 or better: $AUC_{\infty} = AUC_t + \frac{\hat{C}_t}{\hat{\lambda}_z}$

 C_{max} / t_{max} directly from profile

Single dose

- Method of estimation of λ_z stated in protocol!
 - One-compartment model: TTT-method *) (Two times t_{max} to t_z)
 - Maximum adjusted R² (Phoenix/WinNonlin, Kinetica)

$$R_{adj}^{2} = 1 - \frac{(1 - R^{2}) \cdot (n - 1)}{n - 2}$$

WinNonlin \leq 5.3: C_{max} included Phoenix/WNL \geq 6.0: C_{max} excluded

- Multi-compartment models: starting point = last inflection
- Minimum AIC $AIC = n \cdot [\ln(2 \cdot \pi) + 1] + n \cdot \ln(RSS/n) + 2 \cdot p$
- Visual inspection of fit mandatory!
 - *) Scheerans C, Derendorf H and C Kloft
 Proposal for a Standardised Identification of the Mono-Exponential Terminal Phase
 for Orally Administered Drugs
 Biopharm Drug Dispos 29, 145–157 (2008)

- Single dose
 - Unconventional parameters describing the shape of the profile
 - $\square C_{max}/AUC$
 - *HVD* (Half value duration: time interval where $C(t) \ge 50\%$ of C_{max})
 - $_{75\%}$ (Plateau time: interval where $C(t) \ge 75\%$ of C_{max})
 - Occupancy time, $t \ge MIC$ (time interval where C(t) is above some limiting concentration)

- Multiple dose
 - Calculation of AUC_{τ} (dosage interval τ); $AUC_{ss,24h}$ if more than o.a.d. and chronopharmacological variation)
 - No extrapolation!
 - $C_{ss,max} / C_{ss,min}$ directly from profile
 - Peak-Trough-Fluctuation: $(C_{ss,max} C_{ss,min}) / C_{ss,av}$, where $C_{ss,av} = AUC_{\tau} / \tau$
 - Swing: $(C_{ss,max} C_{ss,min}) / C_{ss,min}$

Multiple dose

- Assessment whether steady state is reached (in a linear PK system: $AUC_{\tau} = AUC_{\infty}$)
 - No recommendations in GLs (except EU/US Veterinary)
 - Not required according to comments to EMA BE-GL
 - MANOVA-model (sometimes mentioned in Canada, rarely used)
 - t-test of last two pre-dose concentrations
 - Hotelling's T²
 - Linear regression of last three pre-dose concentrations, individually for each subject/treatment
- Only the last method allows the exclusion of subjects being not in stead state. Other methods give only a yes no result!

Missing values I

- Procedure for Imputation must be stated in the Protocol; recommended:
 - in the Absorption Phase (t < t_{max}) by linear Interpolation of two adjacent values
 - in the Elimination Phase (t ≥ t_{max}) by log/linear Interpolation of two adjacent values
 - estimated value must not be used in calculation of the apparent half life!
- Don't rely on softwares' defaults!
 - Phoenix/WinNonlin interpolates linear unless lin-up/logdown trapezoidal method is used
 - Kinetica interpolates log/lin within descending values

Missing values I

- Missing values II
 - Last value of T missing (e.g., vial broken)
 - AUC_{tlast} (48) T = 2407 AUC_{tlast} (72) R = 2984 T/R = 80.67% biased!
 - Using AUC to t where C≥LLOQ for both formulations (48)

$$AUC_{48} T = 2534$$

 $AUC_{48} R = 2407$
 $T/R = 95\%$

- Not available in software
- Regulatory acceptance?

	Reference		Test	
time	conc	AUC _{0-t}	conc	AUC _{0-t}
0	BLQ	0	BLQ	0
0.25	28.57	4	27.14	3
0.50	48.57	13	46.14	13
0.75	62.50	27	59.38	26
1.00	72.15	44	68.55	42
1.5	83.26	83	79.10	79
2	88.14	126	83.73	119
3	90.14	215	85.63	204
4	88.70	304	84.26	289
6	84.07	477	79.86	453
9	77.11	719	73.25	683
12	70.71	940	67.18	893
16	63.00	1208	59.85	1147
24	50.00	1660	47.50	1577
36	35.36	2172	33.59	2063
48	25.00	2534	23.75	2407
72	12.50	2984	Missing	NA

- Missing values II
 - Last value of T missing (e.g., vial broken)
 - Setting the first concentration in the profile where C<LLOQ to zero. AUC_{all}, 'invented' by Pharsight

$$AUC_{all}$$
 (72) T = 2692
 AUC_{all} (72) R = 2984
 $T/R = 90.22\%$ biased!

- Available in Phoenix / WinNonlin, Kinetica
- Regulatory acceptance?

	Reference		Test	
time	conc	AUC _{0-t}	conc	AUC _{0-t}
0	BLQ	0	BLQ	0
0.25	28.57	4	27.14	3
0.50	48.57	13	46.14	13
0.75	62.50	27	59.38	26
1.00	72.15	44	68.55	42
1.5	83.26	83	79.10	79
2	88.14	126	83.73	119
3	90.14	215	85.63	204
4	88.70	304	84.26	289
6	84.07	477	79.86	453
9	77.11	719	73.25	683
12	70.71	940	67.18	893
16	63.00	1208	59.85	1147
24	50.00	1660	47.50	1577
36	35.36	2172	33.59	2063
48	25.00	2534	23.75	2407
72	12.50	2984	= *0	2692

- Missing values II
 - Last value of T missing (e.g., vial broken)
 - Estimating the missing value from elimination phase.

AUC_{72*} T = 2835
AUC₇₂ R = 2984
T/R = 95%
$$\checkmark$$

- > Not available in software
- > Regulatory acceptance ±

time conc AUC _{0-t} conc AUC _{0-t} 0 BLQ 0 BLQ 0 0.25 28.57 4 27.14 3 0.50 48.57 13 46.14 13 0.75 62.50 27 59.38 26 1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063					
0 BLQ 0 BLQ 0 0.25 28.57 4 27.14 3 0.50 48.57 13 46.14 13 0.75 62.50 27 59.38 26 1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407		Reference		Test	
0.25 28.57 4 27.14 3 0.50 48.57 13 46.14 13 0.75 62.50 27 59.38 26 1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	time	conc	AUC _{0-t}	conc	AUC _{0-t}
0.50 48.57 13 46.14 13 0.75 62.50 27 59.38 26 1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	0	BLQ	0	BLQ	0
0.75 62.50 27 59.38 26 1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	0.25	28.57	4	27.14	3
1.00 72.15 44 68.55 42 1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	0.50	48.57	13	46.14	13
1.5 83.26 83 79.10 79 2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	0.75	62.50	27	59.38	26
2 88.14 126 83.73 119 3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	1.00	72.15	44	68.55	42
3 90.14 215 85.63 204 4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	1.5	83.26	83	79.10	79
4 88.70 304 84.26 289 6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	2	88.14	126	83.73	119
6 84.07 477 79.86 453 9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	3	90.14	215	85.63	204
9 77.11 719 73.25 683 12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	4	88.70	304	84.26	289
12 70.71 940 67.18 893 16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	6	84.07	477	79.86	453
16 63.00 1208 59.85 1147 24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	9	77.11	719	73.25	683
24 50.00 1660 47.50 1577 36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	12	70.71	940	67.18	893
36 35.36 2172 33.59 2063 48 25.00 2534 23.75 2407	16	63.00	1208	59.85	1147
48 25.00 2534 23.75 2407	24	50.00	1660	47.50	1577
	36	35.36	2172	33.59	2063
72 12.50 2984 *11.88 * 2835	48	25.00	2534	23.75	2407
	72	12.50	2984	*11.88	*2835

- Missing values II
 - Values below the lower limit of quantitation (LLOQ)
 - Example as before,
 but LLOQ = 12.5 (instead 10)
 AUC₇₂: T = ?, R = 2984

$$T/R = ?$$

 AUC_{48} : T = 2407, R = 2534

 AUC_{all} : T = 2692, R = 2984

T/R = 90.22% biased!

 AUC_{72^*} : T = ?, R = 2984

$$T/R =$$
?

	Reference		Test	
time	conc	AUC _{0-t}	conc	AUC _{0-t}
24	50.00	1660	47.50	1577
36	35.36	2172	33.59	2063
48	25.00	2534	23.75	2407
72	12.50	2984	BLQ	NA

	Reference		Test	
time	conc	AUC _{0-t}	conc	AUC _{0-t}
24	50.00	1660	47.50	1577
36	35.36	2172	33.59	2063
48	25.00	2534	23.75	2407
72	12.50	2984	= *0	2692

	Reference		Test	
time	conc	AUC _{0-t}	conc	AUC _{0-t}
24	50.00	1660	47.50	1577
36	35.36	2172	33.59	2063
48	25.00	2534	23.75	2407
72	12.50	2984	*11.88	NA

What would you do?

- With any (!) given sampling scheme the 'true'
 C_{max} is missed
 - It is unlikely that you sample *exactly* at the true C_{max} for any given subject
 - High inter- and/or intra-subject variability (single point metric)
 - Variability higher than for AUCs
 - In many studies the win/loose metric!
 - Try to decrease variability
 - Increase sample size (more subjects)
 - Increase sampling within each subject (maybe better)

Theoretical (T/R)

 t_{max} : 6.11/4.02 (Δ 2.09), C_{max} : 41.9/53.5 (81.2%)

- Sampling [2 | 12]
 - = n=4
 - ► C_{max} 78.3%
 - \rightarrow t_{max} Δ 4
 - n=5
 - ► C_{max} 78.3%
 - \rightarrow t_{max} Δ 4
 - n=6
 - ► C_{max} 79.8%
 - \rightarrow t_{max} Δ 1
 - n=7
 - > C_{max} 81.2%
 - \rightarrow t_{max} \triangle 2

- 'C_{max} was observed within two to five hours after administration...'
 - Elimination is drug specific,
 - but what about absorption?
 - Formulation specific!
 - Dependent on the sampling schedule (in a strict sense study-specific)

- EMA GL on BE (2010)
 - Section 4.1.8 Reasons for exclusion 1)
 - A subject with lack of any measurable concentrations or only very low plasma concentrations for reference medicinal product. A subject is considered to have very low plasma concentrations if its AUC is less than 5% of reference medicinal product geometric mean AUC (which should be calculated without inclusion of data from the outlying subject). The exclusion of data [...] will only be accepted in exceptional cases and may question the validity of the trial.

Remark: Only possible after unblinding!

- EMA GL on BE (2010)
 - Section 4.1.8 Resons for exclusion 1) cont'd
 - The above can, for immediate release formulations, be the result of subject non-compliance [...] and should as far as possible be avoided by mouth check of subjects after intake of study medication to ensure the subjects have swallowed the study medication [...]. The samples from subjects excluded from the statistical analysis should still be assayed and the results listed.

- Gastro-resistant (enteric coated) preparations
 - Gastric emptying of single unit dosage forms non-disintegrating in the stomach is prolonged and highly erratic. The consequences of this effect on the enteric coating of delayed release formulations are largely unpredictable.
 - Sampling period should be designed such that measurable concentrations are obtained, taking into consideration not only the half-life of the drug but the possible occurrence of this effect as well. This should reduce the risk of obtaining incomplete concentration-time profiles due to delay to the most possible extent. These effects are highly dependent on individual behaviour.

Gastro-resistant (enteric coated) preparations

■ Therefore, but only under the conditions that sampling times are designed to identify very delayed absorption and that the incidence of this outlier behaviour is observed with a comparable frequency in both, test and reference products, these incomplete profiles can be excluded from statistical analysis provided that it has been considered in the study protocol.

EMEA, CHMP Efficacy Working Party therapeutic subgroup on Pharmacokinetics (EWP-PK)

Questions & Answers: Positions on specific questions addressed to the EWP therapeutic subgroup on Pharmacokinetics

EMEA/618604/2008 Rev. 3, 26 January 2011

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002 963.pdf

What is 'comparable'? For a study in 24 subjects, we get a significant difference for 5/0 (Fisher's exact test: p 0.0496).

Case Study (PPI)

Attempt to deal with high variability in C_{max}

Powered to 90% according to CV from previous studies; 140 (!) subjects and to 80% for expected dropout rate. Sampling every 30 min up to 14 hours (7785 total).

> t_{max} 15 h C_{max} 3.5×LLOQ

Half lives

- Drug specific, but...
 - The *apparent* elimination represents the *slowest* rate constant (controlled release, topicals, transdermals) not necessarily elimination!
 - Avoid the term 'terminal elimination' might not be true
 - Important in designing studies
 - To meet AUC_t ≥ 80% AUC_∞ criterion
 - To plan sufficiently long wash-out (avoid carry-over)
 - To plan saturation phase for steady state

Half lives

- Dealing with literature data
 - What if only mean ±SD is given?
 - Assuming normal distribution:
 μ ± σ covers 68.27% of values (15.87% of values are expected to lie outside of μ ± σ)
 - Example: 8.5 ± 2.4 hours, 36 subjects.
 0.1587 × 36 = 5.71 or in at least five subjects we may expect a half life of > 10.9 hours.
 - Plan for 95% coverage ($z_{0.95} = 1.96$): $p_{0.95} = \mu \pm z_{0.95} \times \sigma$ 8.5 ± 1.96 × 2.4 = [3.80, 13.2] hours. We may expect a half life of >13.2 hours in ~one subject (0.05/2 × 36 = 0.90).

Half lives

Washout in MD Studies

EMA GL on BE (2010)

The treatment periods should be separated by a wash out period sufficient to ensure that drug concentrations are below the lower limit of bioanalytical quantification in all subjects at the beginning of the second period. Normally at least 5 elimination half-lives are necessary to achieve this. In steady-state studies, the wash out period of the previous treatment last dose can overlap with the build-up of the second treatment, provided the build-up period is sufficiently long (at least 5 times the terminal half-life).

Justified by PK Superposition Principle

2001 NfG:

'Switch-over Design'

3 half-lives

Washout in MD Studies

Thank You! Noncompartmental Analysis (NCA) in PK, PK-based Design Open Questions?

Helmut Schütz BEBAC

Consultancy Services for Bioequivalence and Bioavailability Studies 1070 Vienna, Austria helmut.schuetz@bebac.at

To bear in Remembrance...

To call the statistician after the experiment is done may be no more than asking him to perform a *post-mortem* examination: he may be able to say what the experiment died of.

Ronald A. Fisher

[The] impatience with ambiguity can be criticized in the phrase: absence of evidence is not evidence of absence. Carl Sagan

[...] our greatest mistake would be to forget that data is used for serious decisions in the very real world, and bad information causes suffering and death.

Ben Goldacre

