

Design of Comparative Bioavailability Studies

Excursion: Assumptions in Statistics

- All models rely on assumptions
 - Log-transformation allows for additive effects required in ANOVA
 - No carry-over effect in the model of crossover studies
 - Cannot be statistically adjusted
 - Has to be avoided by design (suitable washout)
 - Shown to be a statistical artifact in meta-studies
 - Exception: Endogenous compounds (biosimilars!)
 - Between- and within-subject errors are independently and normally distributed about unity with variances σ_b^2 and σ_w^2
 - If the reference formulation shows higher variability than the test, the 'good' test will be penalized (higher sample size) for the 'bad' reference
 - All observations made on different subjects are independent
 - No monocygotic twins or triplets in the study!

Error(s)

- All formal decisions are subjected to two 'Types' of Error
 - $-\alpha$ = Probability of Type I Error (a.k.a. Risk Type I)
 - $-\beta$ = Probability of Type II Error (a.k.a. Risk Type II)
- Example from the justice system which presumes that the defendant is not guilty:

Verdict	Defendant innocent	Defendant guilty
Presumption of innocence <i>rejected</i> (considered <i>guilty</i>)	wrong decision	correct decision
Presumption of innocence accepted (considered not guilty)	correct decision	wrong decision

Hypotheses

- In statistical terminology
 - Null hypothesis (H_0) :
 - Alternative hypothesis (H_a a.k.a. H_1): Devendant is guilty

Devendant is innocent

```
Decision Null hypothesis true Null hypothesis false
H_0 rejected Type I Error Correct (accept H_a)
Failed to reject H_0 Correct (accept H_0) Type II Error
```

• In BE the Null hypothesis is bioinequivalence $(\mu_T \neq \mu_R)!$

Decision	Null hypothesis true Null hypothesis false			
H ₀ rejected	Patient's risk (α)	Correct (BE)		
Failed to reject H ₀	Correct (not BE)	Producer's risk (β)		

Type I Error

- α Patient's risk to be treated with an inequivalent formulation (H₀ falsely rejected)
 - BA of the test compared to reference in a particular patient is considered to be risky either below 0.80 or above 1.25
 - If we keep the risk of *particular* patients at α 0.05 (5%), the risk of the entire *population* of patients (where BA <0.80 *and* >1.25) is 2α (10%) expressed as a confidence interval: $100(1 2\alpha) = 90\%$
 - However, since in a patient BA cannot be <0.80 and >1.25 at the same time, the patient's risk from a 90% CI is still only 5%!

Type II Error

- β Producer's risk that an equivalent formulation is not approved (H₀ falsely not rejected)
 - Fixed in study planning to 0.1 ≤0.2 (10 ≤20%), where power = 1 β = ≥80 90%
 - If all assumptions in sample size estimations turn out to be correct and power was fixed at 80%,

one out of five studies will fail by pure chance!

- A posteriori (a.k.a. post hoc) power is irrelevant
 - Either a study has demonstrated bioequivalence or not
 - Calculating / reporting a posteriori power demonstrates a lack of statistical knowlege of the CRO

Designs: Selection

Designs: Background

- The more 'sophisticated' a design is, the more information can be extracted
- Hierarchy of designs
 Full replicate (TRTR | RTRT or TRT | RTR) →
 Partial replicate (TRR | RTR | RRT) →
 2×2×2 crossover (TR | RT) →
 Parallel (T | R)

Variances which can be estimated

```
Parallel total variance (pooled of between + within subjects) 2\times2\times2 crossover + between, within subjects \cancel{D}
Partial replicate + within subjects (of R only) \cancel{D}
Full replicate + within subjects (of R and T) \cancel{D}
```

Parallel Designs

- One group is treated with the test formulation and another group with the reference
- Quite common that due to dropouts the data set of eligble subjects is imbalanced, i.e., n₁ ≠ n₂
 - Equal variances should never be assumed (details in Presentation № 6)

Parallel Designs

Example Two-Group Parallel Design

Parallel Designs

Advantages

- Clinical part sometimes faster than cross-over
- Straigthforward statistical analysis
- Drugs with long half life
- Potentially toxic drugs or effect and/or AEs unacceptable in healthy subjects
- Studies in patients, where the condition of the disease irreversibly changes

Disadvantages

- Lower statistical power than crossover design (rule of thumb: sample size should at least be doubled)
- Pheno-/genotyping highly recommended for drugs showing polymorphism in metabolism

- Every subject is treated with all formulations
- In the most simple case (two formulations) subjects are randomized into two groups
 - One is receiving the formulations in the order TR and the other one in the order RT
 - These two orders are called sequences

Standard 2×2×2 (2 treatments, 2 sequences, 2 periods)

Standard 2×2×2 Design

Advantages

- Globally applied standard protocol for bioequivalence, drug-drug interaction, and food effect studies
- Healthy subjects and patients with a stable disease
- Straigthforward statistical analysis

Disadvantages

- Not suitable for drugs with long half life (→ parallel design)
- Not optimal for studies in patients with instable diseases
 (→ parallel design)
- Not optimal for HVD(P)s (→ replicate designs)

- Higher Order Designs (for more than two treatments)
- Latin Squares
 - Each subject is randomly assigned to sequences, where
 - the number of treatments equals
 - the number of sequences and
 - the number of periods
- Variance Balanced Designs

3×3×3 Latin Square

3×3×3 Latin Square

Advantages

- Allows to choose between two candidate test formulations in a pilot study or comparison of one test formulation with two reference formulations (e.g., the FDA's RLD and a European originator)
- Number of subjects in the study is a multiplicative of three
- Design for establishment of dose proportionality

Disadvantages

- Statistical analysis more complex (especially in the case of dropouts and a small sample size)
- Not available in all software
- Not mentioned in any guideline

Variance balanced designs
 Example 3×6×3 Williams' design (three treatments)

Sequence		Period	
	1	2	3
1	Ref.	Test 2	Test 1
2	Test 1	Ref.	Test 2
3	Test 2	Test 1	Ref.
4	Test 1	Test 2	Ref.
5	Test 2	Ref.	Test 1
6	Ref.	Test 1	Test 2

Variance balanced designs
 Example 4×4×4 Williams' design (four treatments)

Sequence	Period			
	1	2	3	4
1	Ref.	Test 3	Test 1	Test 2
2	Test 1	Ref.	Test 2	Test 3
3	Test 2	Test 1	Test 3	Ref.
4	Test 3	Test 2	Ref.	Test 1

Williams' Designs

Advantages

- Allows to choose between two candidate test formulations in a pilot study or comparison of one test formulation with two reference formulations (e.g., the FDA's RLD and a European originator)
- Design for establishment of dose proportionality
- Mentioned in Brazil's (ANVISA), the EMA's, and the WHO's GLs

Disadvantages

- Mores sequences for an odd number of treatment needed than in a Latin Squares design (but equal for even number)
- Statistical analysis more complex (especially in the case of dropouts and a small sample size)
- Not available in all software

Interlude: Failed Studies

Studies fail due to

- 1. true bioinequivalence (CI completely outside the BE-limits)
- 2. poor study conduct (increasing variability)
- 3. pure chance (producer's risk...)
- 4. over-optimistic assumptions about the variability and/or T/R-ratio

Remedies

- 1. Reformulate (another study is futile)
- 2. Find a 'better' CRO
- 3. 4. Another study?Possibly unethical to repeat the study in a larger group of subjects

Interlude: Failed Studies

- Add-On Designs
 - Assess the study for BE
 - If it fails,
 - recruit another group of subjects
 - pool the data and assess for BE again
 - The patient's risk must be controlled
 - Already noticed at Bio-International Conferences (1989, 1992) and guidelines from the 1990s
 - Add-On Designs were shown to inflate the patient's risk *
 - Currently only recommended in Japan and Mexico

^{*} Schütz H. Two-stage designs in bioequivalence trials. Eur J Clin Pharm. 2015;71(3):271–81. doi:10.1007/s00228-015-1806-2.

Group Sequential Designs

- Long and accepted tradition in phase III
 - Based on Armitage et al. (1969), McPherson (1974),
 Pocock (1977), O'Brien/Fleming (1979), Lan/DeMets (1983),
 Jennison/Turnbull (1999), ...
- Fixed total sample size (N) and in BE only one interim analysis
 - Requires two assumptions
 - A 'worst case' CV for the total sample size and
 - A 'realistic' CV for the sample size in the interim

Group Sequential Designs

- All published methods were derived for superiority testing, parallel groups, normal distributed data with known variance, and the interim analysis at exactly N/2
 - That is not what we have in BE
 - Testing for equivalence (generally crossover) and lognormal data with unknown variance
 - Due to dropouts, the interim might not be exactly at N/2 (might inflate the Type I Error)
- Proposal by Gould (1995) in the field of BE did not get regulatory acceptance in Europe

(Adaptive) Sequential Two-Stage Designs

- Fixed stage 1 sample size (n_1) and sample size reestimation in the interim analysis
 - Generally a fixed GMR is assumed
 - Published methods are valid only for a range of combinations of stage 1 sample sizes, CVs, GMRs, and desired power
 - With one exception (inverse normal method) no analytical proof of controlling the Type I Error exists
 - It is the responsibility of the sponsor to demonstrate (e.g., by simulations) that the patient's risk is controlled
- Accepted by the WHO, FDA, EMA, Health Canada, Russian Federation, Eurasian Economic Union

- It may be almost impossible to demonstrate BE of HVD(P)s with a reasonable sample size
 - Example: CV 70%, GMR 0.90, target power 80%, 2×2×2 design

- Since HVD(P)s are considered to be safe and efficacious some jurisdictions accept a larger 'not clinically relevant' difference
 - The BE limits can be scaled based on the variability of the reference product

- Requires a replicate design, where at least the reference product is administered twice (though not necessarily to all subjects)
 - Smaller sample sizes compared to the standard 2×2×2 design but outweighed by increased number of periods
 - Similar total number of individual treatments (hence, study costs drived by bioanalytics similar)
- Any replicate design can be evaluated for 'classical' (unscaled) Average Bioequivalence (ABE) as well

- Reference-scaling (i.e., widening the acceptance range based of the variability of the reference) accepted in many juriscidictions
 - AUC and C_{max}
 - FDA
 - $-C_{max}$ only
 - EMA, ASEAN States, Australia, Brazil, Egypt, Russian Federation, Eurasian Economic Union, East African Community, New Zealand
 - C_{max} (AUC if justified)
 - WHO
 - AUC only
 - Canada

Reference-scaling for HVD(P)s

- Different statistical approaches
 - FDA Reference-scaled average bioequivaence (RSABE)
 - All others Average bioequivalence with expanding limits (ABEL)
- RSABE requires commercial software (SAS, Phoenix/WinNonlin, JMP)
- ABEL can be evaluated by the package replicateBE for the open-source software R *

^{*} Schütz H, Tomashevskiy, Labes D. replicateBE: Average Bioequivalence with Expanding Limits (ABEL). https://cran.r-project.org/package=replicateBE.