

Regulatory Demands for Biostudies

Recap of Presentation № 1

- Design should allow accurate assessment of the treatment effect
- Highest sensitivity to detect differences between formulations considered for/in
 - highest dose strength (generally)
 - single dose
 - fasting state
- Appropriate sample size (80 90% power) and design
- Assessment
 - Inclusion the 90% confidence interval within the BE-limits 80.00 – 125.00%
 - Wider BE-limits for HVD(P)s
 - Narrower BE-limits for NTIDs

Sample Size (more in Presentation № 4)

Minimum Sample Size

- 12 WHO, EU, CAN, USA, AUS, NZ, AR, MZ, ASEAN States, RSA, Russia ('Red Book'), EEU, Ukraine USA 'A pilot study that documents BE can be appropriate, provided its design and execution are suitable and a sufficient number of subjects (e.g., 12) have completed the study.'
- 18 Russia (2008)
- 20 South Africa (modified release formulations)
- 24 Saudia Arabia (12 to 24 if statistically justifiable), Brazil,
 USA (replicate designs intended for RSABE),
 EU (TRT|RTR replicate designs intended for ABEL)
- 'Adequate' India, 'sufficient number' Japan

Sample Size (more in Presentation № 4)

Maximum Sample Size

- Not mentioned in any guideline
- Decided by the IEC/IRB and/or local authority
- An extremely high sample size if the sponsor can afford that –
 might give the impression of 'overpowering' the study
 - The width of the confidence interval (for a given variability) depends on the sample size
 - A high sample size (say, planned for >90% power) leads to a narrow CI which will give a passing study even if the deviation of test from reference is high
 - Has lead to rejection of protocols in the past
 - However, once a protcol is approved and the study performed, there
 is no reason for an agency to reject the study → the patient's risk is
 not affected and still 5%

GCP issues (more in Presentation № 7)

- Manufacturing of investigational products according to the rules of cGMP
- Study scientically justified
 - Design (BE-limits, sample size, statistical methods)
 - Validated bioanalytical method (more in Presentation № 5)
 - Ethical issues
 - Potential benefit for patients outweighs risk of study participants
 - Informed consent form and procedures ready
- Study protocol
 - Approved by IEC/IRB
 - Approved by agency (if applicable)

- Study Initiation
 - Recruitment of volunteers
 - Obtain informed consent
 - Perform pre-study exams
 - Recommended
 - More eligible subjects should be invited for the first administration than the required sample size dictates
 - Subjects might get ill after the pre-study exam or withdraw consent
 - These subjects are called 'stand-ins' and will be included only if necessary

- Study Performance (Clinical Part)
 - Hospitalization the evening before administrations in all periods (otherwise, the mandatory fasting period of ten hours is not guaranteed)
 - Basic vital signs (blood pressure, heart rate) within one hour before administrations
 - Administration according to the study protocol, e.g.,
 - Volume of water (at least 150 mL, non-carbonated, ambient temperature)
 - Upright position
 - Extreme physical restrictions (*e.g.*, lying on the right side for two hours, lying for another two hours, then sitting) are generally counterproductive

- Study Performance (Clinical Part)
 - Blood sampling as planned
 - Samples on ice and/or stabilization, maximum interval until centrifugation, centrifugational force and duration, aliquotation of plasma samples, temperature of freezer)
 - Interim safety measurements (if applicable) and recording of Aes
 - Standardized food/beverages at defined times
 - Generally water can be consumed starting one hour after administration but should not exceed three liters per day
 - In each study period a short physical exam before check-out
 - At the end of the study (within four days after check-out) the same parameters like in the pre-study exam should be measured
 - Sample shipment to the bioanalytical site

- Study Performance (Clinical Part)
 - All performed steps should be documented in the Case Report Form (CRF) in a timely manner
 - Erroneous entries should be corrected in such a way that the original entry is legible
 - Lab exams, radiographs, etc. should be attached to the CRF
 - Activities not directly related to subjects (e.g., receipt and storage of formulations, record of the freezer's temperature, sample shipment) should be documented and kept in the study file

- Study Performance (Bioanalytical Part)
 - Validated Method (more in Presentation № 5)
 - All steps should follow the Bioanalytical Protocol
 - Blinded for treatment (i.e., only subject / period / scheduled sampling time known to the bioanalyst)
 - Documentation of
 - receipt of samples from the clinical site
 - storage of samples (duration, temperature)
 - preparation of stock solutions for calibrators and QC samples
 - preparation af calibrators, QCs, sample preparation
 - analytical batches, calculation of concentrations
 - incurred sample reanalysis
 - All results compiled in the Bioanalytical Report
 - Transfer of results to biostatistics

- Study Performance (Biostatistical Part)
 - Statistical Analysis Protocol in place (more in Presentation № 6)
 - All steps should follow the SAP
 - Documentation of
 - receipt of blinded data from the bioanalytical site
 - NCA to calculate PK metrics of interest
 - locking the database
 - unblinding the study with the randomization scheme (from the clinicial site of the sponsor)
 - statistical evaluation and assessment for BE
 (in a two-stage design: estimate the sample size for the second part)
 - All results compiled in the Biostatistical Report
 - Transfer of results to medical writing

- Study Performance (Medical Writing)
 - Compile clinical, bioanalytical, and biostatistical results
 - Clinical Study Report according to ICH E3 (1995)
 - Not all parts of ICH E3 are applicable to a BE study
 - Remove parts (e.g., dealing with efficacy) and reorder as necessary Examples given in ICH Q&A R1 (2012)
 - Give relevant parts of the bioanalytical and biostatistical reports already in the main text
 - Appendices (at least)
 - Study protocol(s) and amendments (if applicable)
 - Positive vote of the IEC/IRB
 - CVs of PI and sub-investigators
 - Documentation of cGMP conformity of IMPs, receipt, storage
 - Documentation of sample storage, shipment
 - Complete bioanalytical and biostatistical reports

PK Metrics of Interest (details in Presentation № 6)

Single Dose Studies

- $-C_{max}$ Highest observed concentration within the profile
- $-t_{max}$ Time point of C_{max}
- AUC_{0-t} Area under the concentration-time curve from the time of administration to the time point of the last measured concentration
- $-AUC_{0-\infty}$ AUC extrapolated to infinite time
- For immediate release products *instead* of AUC_{0-t} and $AUC_{0-\infty}$
 - AUC₀₋₇₂ AUC truncated at 72 hours
- Most controlled release products show by design 'flip-flop' pharmacokinetics (i.e., $k_a \le k_{el}$)
 - The late phase of the profile represents absorption
 - Sample long enough to get a reliable AUC_{0-∞}

PK Metrics of Interest (details in Presentation № 6)

Multiple Dose Studies

- $-C_{max.ss}$ Highest observed concentration within the profile
- $-t_{max,ss}$ Time point of $C_{max,ss}$
- $-AUC_{0-\tau}$ Area under the concentration-time curve from the time of administration to the end of the dosing interval (τ)
- Innovators / originators
 - C_{min,ss} Lowest observed concentration within the profile
- Generics
 - $C_{\tau,ss}$ Concentration at the end of the dosing interval

- The authority should be provided with
 - Study Synopis giving a brief overview of procedures and results (less than ten pages)
 - All information pertinent to GCP compliance
 - Study Protocol (and amendment(s), if applicable)
 - IEC/IRB approval
 - Documentation of IMP manufacturing, shipment, storage
 - Case Report Forms
 - At least 20% of chromatograms

 (all should be readily available upon request)
 - Study Report including all appendices

Questions

- Study performed and evaluated according to the protocol(s)?
- Any deviations which might cast doubt on the outcome?
 - If yes, reasonably justified and evaluated accordingly?
 - 'Cherry-picking', *i.e.*, giving the impression that various attempts were made to 'save' an otherwise failing study and report only the best one is not acceptable
 - → triggers an inspection
- Does the study look 'to good' to be true?
 - Compare the results (especially the variability) with information in the public domain (publications, European EPARs, FDA's ANDAs)
 - Studies on different subjects in different clincial settings are not directly comparable but if say, the CV is just 25% of the mean of all others
 - → consider an inspection

Questions

- Does the study look 'to good' to be true?
 - Examples (mainly from Indian CROs)
 - ECGs identical for all subjects
 - → breach of GCP
 - Almost superimpossible concentration/time curves
 - → chromatograms simulated, entire study faked
 - Identical peak area of IS in all chromatograms
 - → chromatograms simulated, entire study faked
 - Record of IMPs not matching randomization and remaining samples
 - → instead of T and R, the reference was administered twice
 - Bioanalytical site unblined
 - → samples switched in order pass
 - Audit trail switched off
 - → out of control chromatography adjusted and samples reinjected
 - QCs reintegrated
 - → make an otherwise failed batch pass

Questions

- QCs reintegrated
 - → make an otherwise failed batch pass Inspectors don't like to get fooled *

Name: 836 Date: 13-Aug-2003 Time: 03:14:25 ID: L QC

^{*} LeBlaye O. Quality issues with bioequivalence trials. Feed-back from French inspections. Lisbon 2007

Useful Documents

- Annex VII to procedure for conducting GCP inspections requested by the EMEA: Bioanalytical part, pharmacokinetic and statistical analyses of bioequivalence trials ¹
- Reflection paper for laboratories that perform the analysis or evaluation of clinical trial samples ²
- Guidance on triggers for inspections of bioequivalence trials:
 Quick scan ³
- Inspections of Clinical Facilities and Analytical Laboratories
 Conducting Bioequivalence Studies Submitted in ANDAs ⁴
- Review of Bioequivalence Studies with Clinical Endpoints in ANDAs ⁵

¹ EMA. GCP Inspectors Working Group. 28 May 2008.

² EMA. GCP Inspectors Working Group. 28 February 2012.

³ EMA. GCP Inspectors Working Group. 21 February 2017.

⁴ FDA / CDER. 9 May 2012.

⁵ FDA / CDER. 26 June 2017.