

Noncompartmental Analysis, Statistical Evaluation

Noncompartmental Analyis

- NCA a.k.a. SHAM (Shape, Height, Area, Moments)
 - PK metrics (plasma)
 - Single dose
 - Extent of Absorption (WHO, EEA, ...), Total Exposure (USA):
 AUC (Area Under the Curve)
 - » In most jurisdictions the PK metric for BE is AUC_{0-t} , where t is the last time point with a quantifiable concentration
 - » WHO, EEA: For IR products with a long half life AUC_{0-72} is sufficient
 - » USA and EEA (controlled release products only): additionally $AUC_{0-\infty}$
 - Rate of Absorption (WHO, EEA, ...), Peak Exposure (USA): C_{max}
 - $-t_{max}$ (Russia, Eurasian Economic Area, ...)
 - Rarely relevant
 - » $t_{75\%}$, POT-25 (Plateau time or peak occupancy time; time span where $C(t) \ge 75\%$ C_{max} : Russia for modified release products)
 - » MRT (Mean of Residence Times)
 - » Therapeutic Occupancy Time (time span where $C(t) \ge$ some given limit, e.g., the MIC)

Noncompartmental Analyis

Multiple dose

- Extent of Absorption (WHO, EEA, ...), Total Exposure (USA): $AUC_{0-\tau}$ (AUC covering the dosing interval τ) If chronopharmacological variation and more than o.a.d. regimen: AUC_{0-24} No extrapolation of AUC in any case
- Rate of Absorption (WHO, EEA, ...), Peak Exposure (USA): $C_{max,ss}$
- Minimum concentration $C_{min,ss}$ (lowest observed concentration within the profile; originators) $C_{\tau,ss}$ (concentration at the end of the dosing interval; generics)
- *PTF* (Peak-to-Trough Fluctuation) $(C_{max,ss} C_{min,ss}) / C_{av,ss}$, where $C_{av,ss} = AUC_{0-\tau} / \tau$
- Mentioned in some GLs but practically obsolete due to its extreme variability $Swing = (C_{max ss} C_{min ss}) / C_{min ss}$

Noncompartmental Analyis

- PK metrics obtained by NCA depend much more on the sampling schedule than PK parameters estimated with a PK model
 - Examples
 - It is unlikely that one is able to 'catch' the true C_{max}/t_{max} in every subject
 - Hence, frequent sampling around t_{max} mandatory
 - To obtain a reliable estimate of the apparent elimination λ_z , at least three samples required
 - However, contrary to PK modeling NCA is independent from software
 - Paper, pencil, brain...

PK model | AUC

- AUC is the integral of the concentration-time curve
 - One compartment, extravascular dose, no lag-time

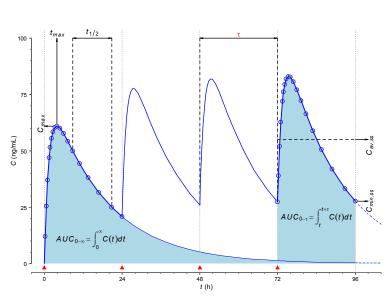
$$C(t) = \frac{f \cdot D}{V} \frac{k_a}{k_a - k_e} \left(e^{-k_e \cdot t} - e^{-k_a \cdot t} \right)$$

$$AUC_{0-\infty} = \int_0^\infty C(t) dt$$

$$= \frac{f \cdot D}{V} \frac{k_a}{k_a - k_e} \left(\frac{1}{k_e} - \frac{1}{k_a} \right)$$

$$f \cdot D$$

$$=\frac{f\cdot D}{CL}$$

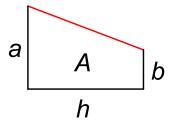


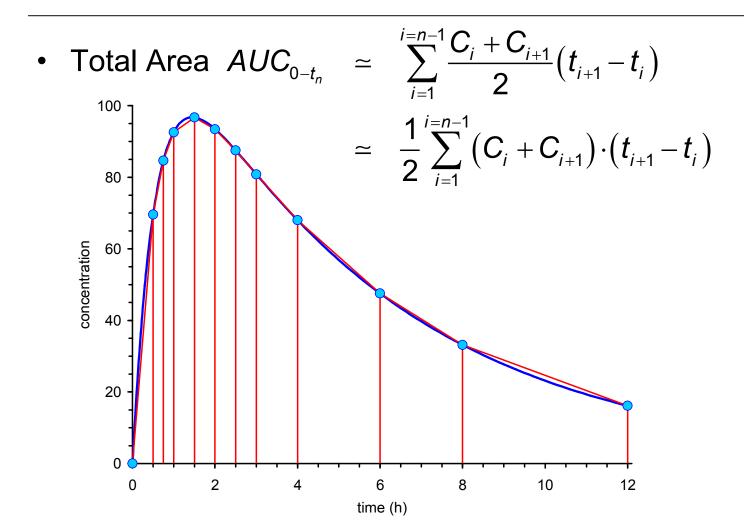
Superposition Principle of linear PK $AUC_{0-\tau} \approx AUC_{0-\infty}$

NCA | AUC

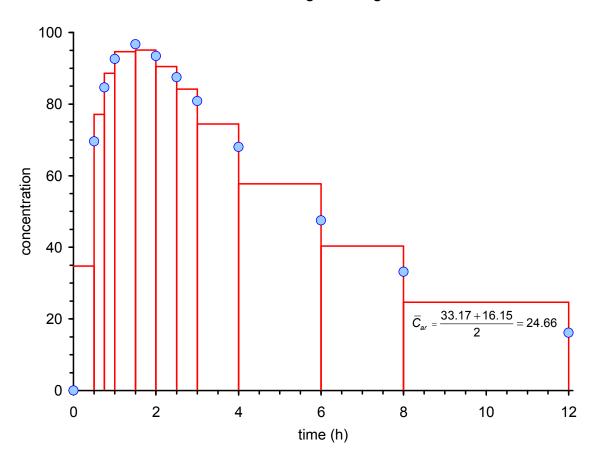
- In NCA numeric approximation of the integral is required
 - Linear trapezoidal method
 - Linear-up / logarithmic-down trapezoidal method
 - Of academic interest
 - Cubic splines
 - Lagrange polynomials
 - · Simpson's rule

- Linear interpolation between data points
- Sections are represented by trapezoids
- Sides a, b are two neighbouring concentrations
- h is the time interval
- Area of one trapezoid $A = \frac{a+b}{2}h$





arithmetic means of neighbouring concentrations

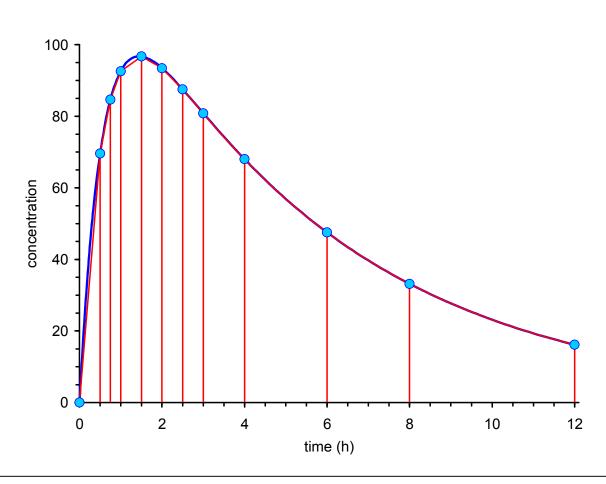


- Positive bias
 - Overestimates AUC in both the absorption and distribution / elimination phases
- Originated in the dark ages
 - when profiles were plotted on paper, cut out, weighed on an analytical scale, and compared to the paper-weight of known area (e.g., A4 of 80 g/m²: 4.9896 g / 623.7 cm²)
- Should have been thrown into the scientific waste-can with the invention of pocket calculators decades ago
- In general elimination follows an exponential decrease

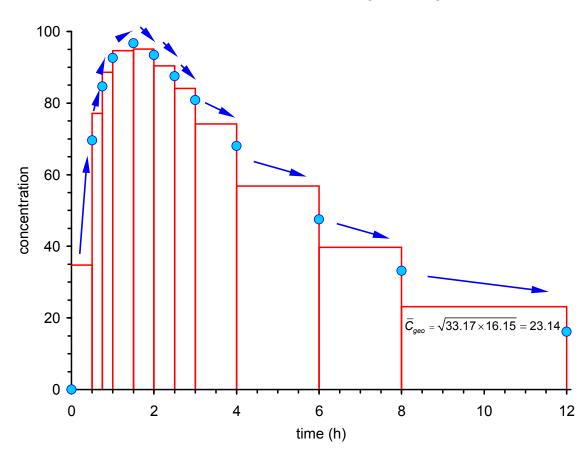
$$C(t) = \frac{f \cdot D}{V} \frac{k_a}{k_a - k_e} \left(e^{-k_e \cdot t} \right)$$

- Much better alternative: Linear-up / logarithmic-down trapezoidal method
- Sections with *increasing or equal* concentrations $(C_{i+1} \ge C_i)$ calculated by the linear trapezoidal method
- Sections with decreasing concentrations
 (C_{i+1} < C_i) calculated by the logarithmic-linear trapezoidal method, i.e.,

$$AUC_{t_{i}-t_{i+1}} \simeq \frac{C_{i+1}-C_{i}}{\ln \frac{C_{i+1}}{C_{i}}} (t_{i+1}-t_{i})$$
 C_{i} Δt



arithmetic / geometric means of neighbouring concentrations

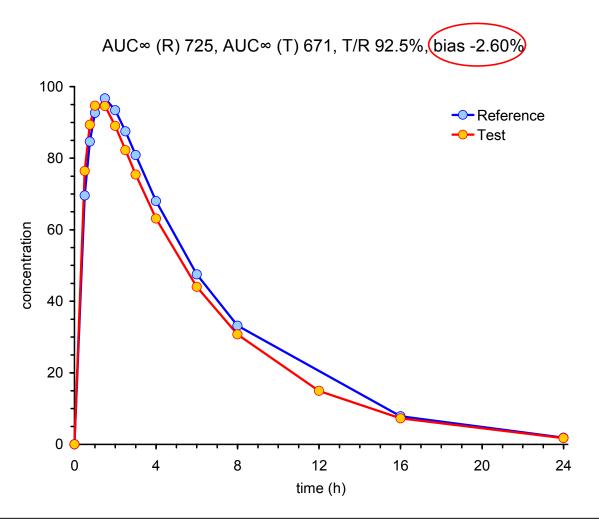


- Avoids positive bias in distribution / elimination phases
- Suitable for both i.v. and e.v. administrations
- Suitable for multiphasic profiles
 - Secondary peaks due to enterohepatic recycling
 - Pulsatile release products
 - If AUC of more than one profile has to be calculated (e.g., two doses with τ 12 h and AUC_{0-24} is required due to circadian variation in PK)
- Implemented in standard PK software for decades
- Only exception where the method performs worse than the linear trapezoidal
 - Drugs following Michaelis-Menten PK (e.g., alcohol)

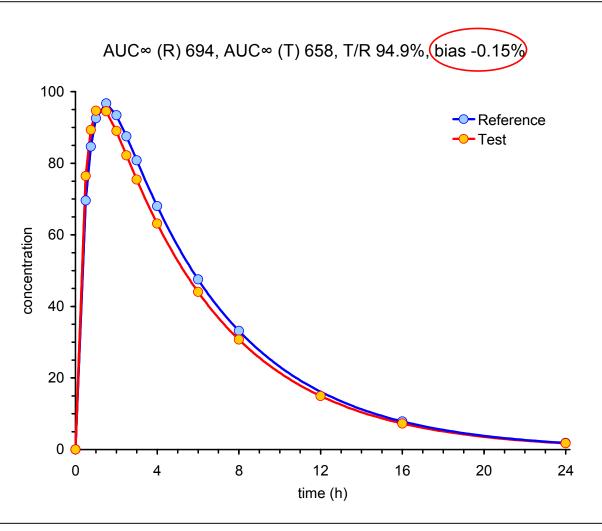
AUC_{0-t} | Problem 1

- Recap: In most jurisdictions the PK metric for BE is
 AUC_{0-t}, where t is the last time point with a quantifiable
 concentration
- Ideally we are able to calculate AUC_{0-t}
 - for all treatments
 - in all subjects
- What if
 - a sample was missing (e.g., vial broken in centrifugation)?
- Example
 - True T/R-ratio 95%, 12 h sample (R) missing
 - Comparison of linear and lin-up / log-down trapezoidal methods

AUC_{0-t} | Problem



AUC_{0-t} | Solution



C_{max} | Problem & Solutions

- What if
 - samples in the area of t_{max} are missing?
- Exclude the subject from the comparison of C_{max}
 - Power depends on the CV (coefficient of variation), the GMR (geometric mean ratio), and n (sample size) where the rank order of their influence on power is GMR >> CV > n
 - Power will be compromised but to a much lesser degree than many people expect

NCA | λ_z

- Recap: To obtain a reliable estimate of the apparent elimination λ_z , at least three samples required
 - The automatic algorithm based on maximizing R^2_{adj} is known to be 'greedy' (*i.e.*, reaches for too early time points) and
 - has difficulties with 'flat' profiles (e.g., ill-defined C_{max} of controlled release products) and
 - regularly fails completely for multiphasic release products
 - Alternative: TTT method *
 - Implemented in the open source package <u>bear</u> for <u>R</u>
 - Visual inspection of fits by a pharmacokineticist (with optional correction) is mandatory in all methods

^{*} Scheerans C, Derendorf H, Kloft C. *Proposal for a Standardised Identification of the Mono-Exponential Terminal Phase for Orally Administered Drugs*. Biopharm Drug Dispos. 2008;29(3):145–57. doi:10.1002/bdd.596.

Parallel Designs

- One group is treated with the test formulation and another group with the reference
- Quite common that due to dropouts – the data set of eligble subjects is imbalanced, i.e., $n_1 ≠ n_2$
- Equal variances should never be assumed (FDA 2001)
 - Treatment effect might be biased and
 - · patient's risk inflated
 - In some software (e.g., Kinetica, ThothPro) either wrong calculation or not possible at all

Subj.	Group 1 (T)	Group 2 (R)
1-13	100	110
2-14	103	113
3-15	80	96
4-16	110	90
5-17	78	111
6-18	87	68
7-19	116	111
8-20	99	93
9-21	122	93
10-22	82	82
11-23	68	96
12-24	dropout	137
n	11	12
mean	95	100
S2	298	314
s	17.3	17.7

Subj.	Group 1 (T)	In (T)	Group 2 (R)	In (R)
1-13	100	4.605	110	4.700
2-14	103	4.635	113	4.727
3-15	80	4.382	96	4.564
4-16	110	4.700	90	4.500
5-17	78	4.357	111	4.710
6-18	87	4.466	68	4.220
7-19	116	4.754	111	4.710
8-20	99	4.595	93	4.533
9-21	122	4.804	93	4.533
10-22	82	4.407	82	4.407
11-23	68	4.220	96	4.564
12-24	dropout	_	137	4.920
n	11	11	12	12
mean	95	4.539	100	4.591
S ²	298	0.03418	314	0.03231
s	17.3	0.1849	17.7	0.1798

Assuming equal variances

$$v = n_1 + n_2 - 2 = 21$$

 $t_{1-\alpha,21} = 1.7207$

90% CI: 83.28% - 108.20%

Adjusting for unequal variances by Satterthwaite's degrees of freedom

$$v = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}} = 20.705$$

$$t_{1-\alpha,20.705} = 1.7219$$

90% CI: 83.26% - 108.23%

Minor difference in the CIs but only little imbalance in the data and variances quite similar. However, the simple *t*-test is always liberal, *i.e.*, compromises the patient's risk.

- Crossover Designs (2×2×2)
 - Every subject is treated with both the test and the reference formulation
 - Subjects randomized to two sequences TR and RT
 - Treatment periods separated by washout
 - Potential period effects are accounted for in the analysis (mean out)
 - Evaluation by
 - Analysis of Variance (ANOVA) WHO, EMA, …
 - Linear mixed effects model FDA, Health Canada
 - Results are identical for balanced datasets (equal number of subjects in both sequences) and differ only slightly for imbalanced ones

Crossover Designs (2×2×2) – Example

subject	Τ	R
1	28.39	35.44
2	39.86	49.42
3	32.75	36.78
4	33.36	33.40
5	34.97	34.81
6	24.29	24.65
7	28.61	31.77
8	45.44	45.54
9	59.49	65.29
10	27.87	28.23
11	24.26	25.71
12	42.30	37.01

	sequer	nce RT		sequer	nce TR
subject	РΙ	PΙΙ	subject	РΙ	ΡII
2	39.86	49.42	1	28.39	35.44
3	32.75	36.78	4	33.36	33.40
5	34.97	34.81	6	24.29	24.65
8	45.44	45.54	7	28.61	31.77
10	27.87	28.23	9	59.49	65.29
11	24.26	25.71	12	42.30	37.01

Ordered by treatment sequences (RT|TR)

ANOVA on log-transformed data \rightarrow

Crossover Designs (2×2×2) – Example cont'd

Sequence	Period 1		Period 2			Sequence mean	
1	1R = X ₋₁₁	3.5103	1T =	X _{·21}	3.5768	X1	3.5436
2	$2T = X_{-12}$	3.5380	2R =	X. ₂₂	3.5883	X ₂	3.5631
Period mean	$X_{\cdot 1}$.	3.5241		X. ₂ .	3.5826	X	3.5533
RT =	$n_1 = 6$						
TR =	$n_2 = 6$	1/n ₁ +1/n ₂	0.3333				
balanced	n = 12	1/n	0.0833	n ₁ +n ₂ -2	10	•	

Analysis of Variance							
Source of variation	df	SS	MS	F	P-value	CV	
Inter-subjects							
Carry-over	1	0.00230	0.00230	0.0144	0.90679		
Residuals	10	1.59435	0.15943	29.4312	4.32E-6	28.29%	
Intra-subjects							
Direct drug	1	0.00040	0.00040	0.0733	0.79210		
Period	1	0.02050	0.02050	3.7844	0.08036		
Residuals	10	0.05417	0.00542			7.37%	
Total	23	1.67172					

 δ_{ML} 1.0082 MLE (maximum likelihood estimator) of Delta-ML

X_R 3.5493 LS (least squares mean for the reference formulation) exp(X_R) 34.79

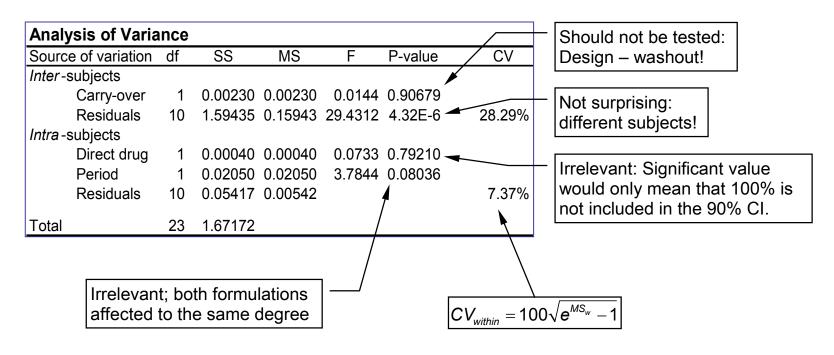
 X_T 3.5574 LS (least squares mean for the test formulation) exp(X_T) 35.07

Crossover Designs (2×2×2) – Example cont'd

Classical (Shortest) Confidence Interval

```
± x rule:
                  20 [ 100 - x; 1 / (100 - x) ]
                                                                     \alpha 0.0500 p=1-2·\alpha 0.9000
           -0.2231
                                         \theta_{11}
                                                 +0.2231
      \delta_{\mathsf{L}}
               80%
                                                    125%
                                                                t_{2\cdot\alpha}\,df 1.8125
                                         \delta_{\rm U}
           -0.0463
                                         U₁
                                                  0.0626 difference within Theta-L AND Theta-U; bioequivalent
                                         U<sub>2</sub> 106.46% difference within Delta-L AND Delta-U; bioequivalent
      L<sub>2</sub> 95.47%
                 \delta_{\text{MI}} \leftarrow 100.82\% \implies MLE: maximum likelihood estimator
              \delta_{\mathsf{MVUE}}
                             100.77%
                                               MVUE: minimum variance unbiased estimator
                 \delta_{\mathsf{RM}}
                            100.98%
                                               RM: ratio of formulation means
                \delta_{\mathsf{MIR}}
                            101.44%
                                               MIR; mean of individual subject ratios
```

Interpreting ANOVA Tables – Example cont'd



- Statistical significant ≠ clinically relevant
 - For any given T/R-ratio and variability one will get a significant treatment effect (in the ANOVA p <0.05) if the sample size is only large enough
 - The confidence interval narrows with √N, *i.e.*, if one uses a four times larger sample size, the CI will be ~half as wide
 - If the CI does not include 100% any more, treatments will statistically significant differ
 - However, if the 90% CI is within the BE-limits, this difference is clinically not relevant

- General Procedure (all Designs)
 - Based on the design set up a statistical model
 - Log-transform the PK metrics of interest
 - Calculate for T and R
 - Balance sequences: Geometric mean
 - Imbalanced sequences: Adjusted mean (a.k.a. least squares mean)
 - Calculate the ratio of means
 - Calculate the 90% confidence interval (CI) around the ratio
 - The width of the CI depends on the variability observed in the study
 - The *location* of the CI depends on the observed test/reference-ratio

- BE Assessment (all Designs)
 - Decision rules based on the CI and pre-specified BE-limits
 - CI entirely outside the BE-limits → Bioinequivalence proven
 - CI overlaps the BE-limits (lies not entirely within the limits) → Bioequivalence not proven (indecisive)
 - CI entirely inside the BE-limits → Bioequivalence proven
 - Methods for reference-scaling
 - The BE-limits depend on the CV_{wR} observed in study
 - Only the method pre-specified in the protocol

