

Good Clinical Practice

History

- Nuremberg Code
 - Ten point memorandum after the 'Doctor's Trial'
 1947
- Helsinki Declaration
 - Ethical Principles for Medical Research Involving
 Human Subjects
- Belmont Report
 - Ethical Principles and Guidelines for the Protection
 1979
 of Human Subjects of Research

1964

Development

WHO

 Guidelines for good clinical practice for trials on pharmaceutical products **- 1995**

- ICH
 - E6(R1) Guideline for Good Clinical Practice

- 1996

E6(R2) Integrated Addendum to ICH E6(R1)

- 2016

- EU
 - Implementation of GCP in the Conduct of Clinical Trials on Medicinal Products for Human Use

- 2001

- DGDA
 - Guidelines for Good Clinical Practice (GCP)
 for Trials on Pharmaceutical Products Bangladesh

- 2015

GCP = Ethical Standards + Quality Data

Scope

- Clinical trials (including multi-center) on human subjects
- Not applicable to non-interventional trials (observational)
- Ethical and scientific quality requirements
 - Design
 - Conduct
 - Recording
 - Reporting
- Compliance provides assurance that
 - rights, safety, and well-being of trial subjects are protected
 - · results are credible
- All clinical trials, <u>including bioavailability and bioequivalence</u> <u>studies</u>, shall be designed, conducted and reported in accordance with the principles of GCP

Basic Principles

Ethics

- Ethical conduct
- Benefit justifies risks
- Rights, safety, and well-being of trial subjects prevail over interests of science and society

Background and Protocol

- Available information (nonclinical, clinical) supports the study
- Compliance with a scientifically sound, detailed protocol

Responsibilities

- Protocol approved by ethics committee prior to study initiation
- Medical care/decisions by qualified physician
- Study personnel is qualified (education, training, experience) to perform required tasks

Basic Principles

- Informed Consent
 - Freely given from every subject prior to participation
- Data Quality and Integrity
 - Accurate reporting, interpretation, and verification
 - Confidentiality of records guaranteed
- Investigational Products
 - Conform to cGMP and used according to protocol
- Quality Control / Quality Assurance
 - Systems with procedures to ensure quality of every aspect of the study

Ethics

- Every interventional trial carries some risk
 - Adverse Drug Reactions (ADR)
 - Some drugs should not be administered to healthy subjects → study in patients
 - For some drugs in patients the standard treatment cannot be interrupted → multiple dose study only
 - Even phlebotomy...
- Sample size
 - ICH E9 (Statistical Principles for Clinical Trials)
 "The number of subjects in a clinical trial should always be large enough to provide a reliable answer to the questions addressed."
 - Sample size too small → Probability of success (power) not sufficient
 - Sample size too large → Risk for subjects in the study does not outweigh potential benefit for patients

Background and Protocol

- Background supports the study
 - Literature
 - Information in the public domain, e.g.,
 - FDA's database of NDAs and ANDAs
 - European Public Assessment Reports (EPARs)
 - If available, nonclinical and clinical information
- Protocol
 - Scientifically sound
 "Only if one asks the right question the answer can be useful."
 - Detailed
 - Planned methods and procedures sufficiently described
 - Referring only to SOPs is not recommended
 - Procedure how to deal with deviations given

Informed Consent

- Information about
 - Risks
 - All (!) potential ADRs (non-medical terms & language, likelihood)
 - Pertinent to the study's procedures
 - Number of blood samples & volume
 - Pre- and post-study lab exams, radiography, ...
 - Study restrictions
 - Hospitalization
 - Physical activity
 - Standardized food / beverages
- Freely given from every subject prior to participation
 - If a subject is illiterate, an impartial witness is mandatory
 - A husband cannot act as an impartial witness for his wife

Investigational Products

- Manufactured according to cGMP
 - If not established, the outcome of any BE study is of doubtful value
 - Patient's risk If BE was demonstrated, batch-to-batch variability might lead to bioinequivalence in clinical practice
 - Producer's risk If BE was not demonstrated, the risk of failure might have been higher than anticipated in study planning
- Used according to the protocol
 - Pranial state (fasting period, with / without food)
 - Oral administration (volume of water, temperature)
 - Intravenous administration (infusion rate)
 - Dermal application (area, occlusion)

ALCOA

- All data of a study has to be
 - Attributable
 - Legible
 - Contemporaneously recorded
 - · Original or a true copy
 - Accurate
- Data capture / entry without substantial delay
 - What, when, and by whom?
 - If modification necessary (erroneous entry)
 - As above and
 - Why?
 - No overwriting the original data has still to be legible

- Recording on scrap paper for later transfer to a CRF / lab notebook is not acceptable
- Electronic data capture
 - Write-only access granted to authorized staff
 - Right to modifiy data as above; in a study with audit trail
 - Read-only access to QC/QA
- Audit trail in CDS, LIMS
 - Recommended in bioanalytical method development
 - Mandatorily activated
 - Bioanalytical method validation (BMV)
 - During the entire study (system suitability tests, analysis of calibrators, QC, and unknown samples)

Compilation

- If a paper-based system is used, double data entry to an electronic system with automatic comparison recommended
- Software for automatic compilation has to be validated
- Data transfer (example BE)
 - Sponsor → Clinical site
 - Protocol
 - Randomization
 - Sponsor → Bioanalytical site
 - Protocol
 - Alternatively
 - Number of subjects
 - Number of periods
 - Scheduled sampling time points

- Data transfer (example BE) cont'd
 - Clinical site → Biostatistics
 - For each subject and period
 - Administered dose(s), actual date / time
 - Actual time points blood sampling
 - Bioanalytical site → Biostatistics
 - For each subject, period, and scheduled sampling time point
 - Measured concentrations
 (of parent and metabolite(s) if applicable)
 - After both data sets are joined in biostatistics, the study can be unblinded and the data base has to be locked
 - NCA to calculate PK metrics
 - Statistical evaluation and assessment for BE
 - Results → Medical Writing

Transfer of data

- Only if the final version of the respective report is approved by the QAU
- Transfer of immediate results / draft reports is not acceptable
- Once a study is complete
 - In a paper-based system
 - All original data (CRFs, lab exams, chromatograms,...), draft and final report(s) have to be archived
 - In an electronic system
 - Print outs have to be archived
 - Electronic data have to locked
 - Access to the archive
 - Only by archivists and the QAU

Quality Control / Quality Assurance

- QC guarantees data integrity
- QA supervises
 - The QRO's general procedures
 (SOPs, training of staff, maintenance of records,...)
 - The study's procedures
 (adherence to the protocol, record of deviations,...)
- The Quality Assurance Unit has to be independent from the CRO's general structure
 - Reports directly and only to the management
 - If a third-party is involved, audit by the QAU mandatory
 - If an electronic data system is established,
 read-only access to all files has to be granted

Responsibilities

Shared between

- Sponsor
- Independent Ethics Committee (IEC) / Institutional Review Board (IRB)
- Contract Research Organization (CRO)
 - Principal Investigator (PI), Clinical Investigators (CI)
 - Clinical Research Coordinator (CRC) / Associate (CRA)
 - Research Nurses
 - Lab Technicians
 - Medical Monitors
 - Data Entry / IT Personnel
 - Biostatisticians
 - Medical Writers

Audited by QAU

Reports to management

Responsibilities

- The CRO is responsible to have
 - a sufficient number of trained personell
 - an established system of SOPs
 - all equipment required for the study
 - an independent QAU
- But the sponsor is responsible to verify that
 - A fancy website and flowery promises of the CRO's business manager are not sufficient
 - At least before the first study the sponsor should perform an audit
 - Every study should be monitored by the sponsor (preferred) or an independent monitor

Non-Compliance to GCP

- Informed consent procedure
 - Information not given by the PI but a study nurse
 - Language in subject information 'too complicated' and incomprehensible for laypersons
- SOP system
 - Data verification and traceability
 - For any given date it has to be possible to reconstruct why and how a certain result was obtained and considered valid
 - Required
 - Original data (and if modified access to the audit trail)
 - SOP which was current at the given date
 - Procedures followed in a study but not covered in an SOP
 - · Have to be unambiguously described in the protocol

Non-Compliance to GCP

- SOP system (cont'd)
 - SOPs should be written by the personell who will have to follow it, although support by a supervisor is acceptable
 - 'External' SOPs (bought from a third party) or ones written by the QC are discouraged
- Staff no sufficiently educated & trained
 - Data entry not in a timely manner
 - A study nurse might not be trained to add a very small volume of a stabilizer to whole blood
 - A biostatistican familiar with BE might not be qualified to evaluate a therapeutic equivalence study
- Software not validated
 - Difficult for off-the-shelf (commercial) software, almost impossible for spreadsheets

Non-Compliance to GCP

QAU

- Not independent → reports to the PI
- Write-access of data → (accidental) modification possible
- Corrective Action / Preventive Action (CAPA)
 - If anything happens in a study which was not anticipated, measures should be taken
 - Identify the source ('root cause analysis')
 - If possible, correct the error
 - Prevent its occurrence in the future
 - No room for creativity to 'safe' an undesired outcome!
- Useful Documents (EMA)
 - Q&A: Good clinical practice (GCP)
 - Inspections procedure