

Pitfalls in Bioequivalence

If anything can go wrong, it will.

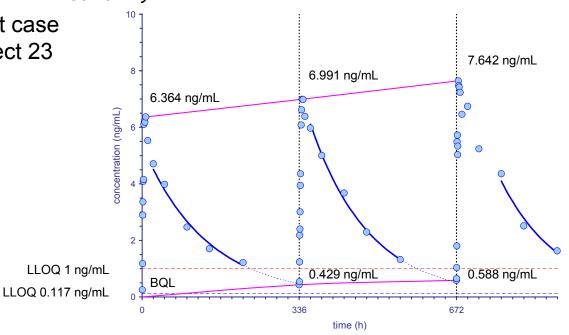
Edward A. Murphy Jr.

- In a crossover-study the washout between treatments has to be sufficiently long
 - Pre-dose concentrations which are residuals of previous period(s) have to be avoided
 - In order to get an unbiased estimate of treatment differences the physiological state of subjects in higher period(s) has to be the same as in the (drug-naïve) first period
 - Washout (generally ≥5times the apparent half life) must not be based on an average. The distribution of half lives should be kept in mind; some subjects might show a substantially longer half life – especially if the drug is subjected to polymorphism (poor and extensive metabolizers)
 - Don't forget pharmacodynamics. If the drug is an auto-inducer (e.g., coumarins) or -inhibitor (e.g., imatinib) the body has to return to its original state before the next dose.

- Drug A: t_{1/2} 60 100 h (literature)
 - BA study
 - 10 mg drug A hydrochloride p.o. vs. i.v.
 - 12 subjects
 - 2×2×2 crossover, washout 35 days
 - Sampling until 312 hours post dose
 - LC/MS-MS, LLOQ 1 ng/mL (drug A base / plasma)
 - Results considered important for designing other studies
 - $-t_{1/2}$ 49.9 ± 13.0 h (harmonic mean ± jackknife standard deviation)
 - In none of the samples drawn at 312 h
 a concentration ≥LLOQ was measured
 - Extrapolated AUC 10.0% (median)3.8% 13.9% (minimum maximum)

- Drug A: t_{1/2} 60 100 h (literature)
 - Comparative BA study aiming to demonstrate BE
 - 10 mg drug A hydrochloride (primary target T₂ vs. R, descriptive T₂ vs. T₁)
 - 36 subjects
 - 3×6×3 crossover (Williams' design), washout 14 days
 - Washout planned for a worst case $t_{1/2}$ of 66 h (covering >5 half lives)
 - Sampling until 216 hours post dose
 - No problems with extrapolated AUC expected (simulations)
 - GC/MS, LLOQ 0.117 ng/mL (drug A base / plasma)
 - Given that, can you imagine what happened and why?

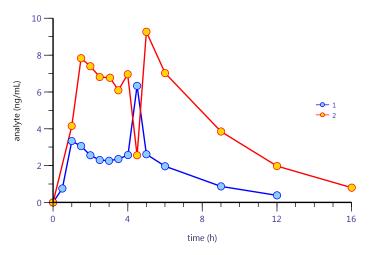
- Pre-dose concentrations ≥LLOQ: n (% of subjects, geom. means)
 - Period 1: all <LLOQ
 - Period 2: 21 (58%, 0.226 ng/mL)
 - Period 3: 18 (50%, 0.222 ng/mL)
- Half lives (harmonic means)
 - Period 1: 51.68 h
 - Period 2: 54.20 h
 - Period 3: 63.03 h

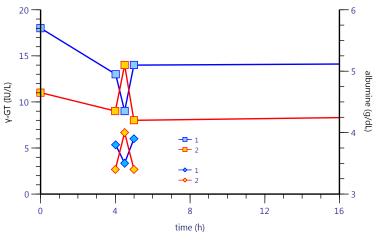

Issues

- Improving the bioanalytical method (~9times lower LLOQ) was not a good idea
 - If we would have used the previous method we would have measured not a single (!) pre-dose concentration >LLOQ
- Shorter washout (35 days → 14) was not a good idea as well
 - Only if the estimation of λ_z is performed *blinded for* treatment different half lives in the periods (due to accumulation) become evident even with the less sensitive method

- Most statisticians unblind studies before performing NCA, which would cover potential problems
 - Half lives (harmonic means)

»
$$T_1$$
: 54.51 h
» T_2 : 55.99 h
» R: 56.73 h

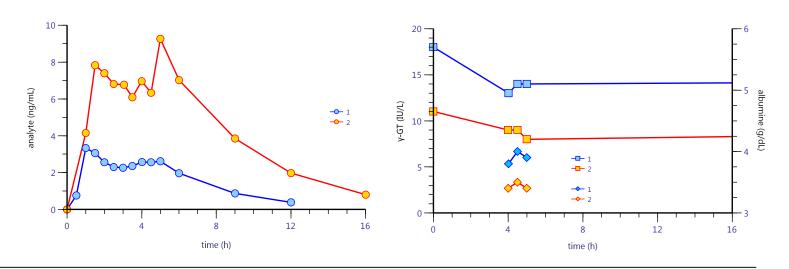

 Worst case Subject 23



Clinical phase

- Drug B: Biphasic modified release product, pilot study
- Suspected mix-up in the transfer from sample vials after centrifugation to (plasma) sample vials

Measurable values in clin. chemistry (limited, since anticoagulant citrate)

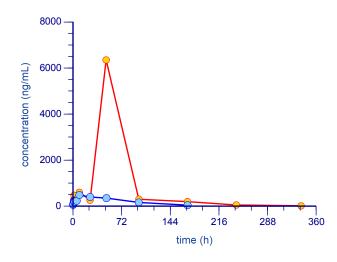


Clinical phase

- Drug B: Biphasic modified release product, pilot study
- Exploratory: Values swapped (analyte and clin. chemistry)
- Samples of subjects 1 & 2
 both taken in the first period

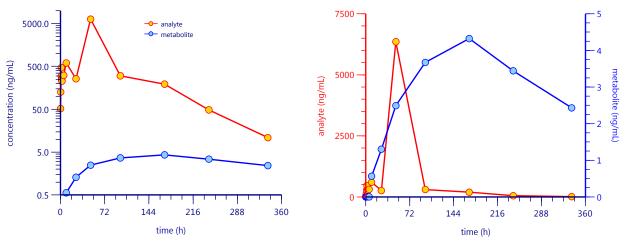
Suspected mix-up likely due to clin. chemistry values

Clinical phase


- Barcode system failed in the first period
- No bail-out procedure (e.g., four-eye principle)
- Sponsor monitored plasma separation only up to two hours (when the barcode system was still operable)
- Blinded review of data for irregular profiles
 - EMA BMV GL (2011)
 - Exclusion only possible if error documented
 - Measurements are 'carved from stone'
 (not even confirmatory reanalysis is acceptable)
 - Reanalysis of pre-dose samples if >LLOQ acceptable (why?)
 - FDA Rev.1 (Sep 2013)
 - Exclusion after repeated analysis acceptable if defined by SOP
 - FDA Draft (May 2018), ICH M10 Draft (Feb 2019)
 - Like EMA, not acceptable

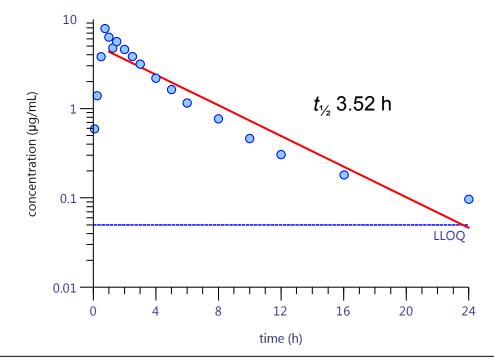
- Clinical phase
 - Drug C: Liposome encapsulated for infusion
 - Analytes
 - Encapsulated drug
 - Unencapsulated drug (*i.e.*, released from liposomes)
 - Total drug (encapsulated + unencapsulated)
 - Metabolite (formed from unencapsulated drug only)
 - Drug may be released from liposomes by
 - shear forces (infusion pump, needle with narrow diameter)
 - high temperature and extended interval until centrifugation
 - high g force in centrifugation
 - Only the latter two can be prevented
 - blood samples on ice, ≤ 45 minutes until centrifugation
 - stabilization by DMSO

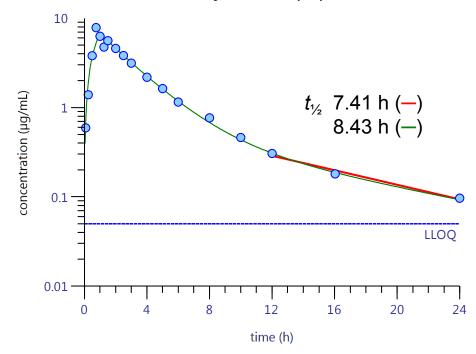
Clinical phase


- Multi-site study in terminal cancer patients
- Clinical staff trained about critical sample handling but
 - unfamililar procedure esp. in small sites
 - necessity of following SOPs and documentation of deviations in conformity with GCP not well understood
 - well-being of patients considered by clinical staff of oncology departments of higher priority than 'annoying paperwork'

- Clinical phase
 - Surprises in bioanalytics
 - Extremely high concentrations of unencapsulated drug C observed in about 2% of samples
 - All suspect values confirmed in repeated analyses (against GLs!)

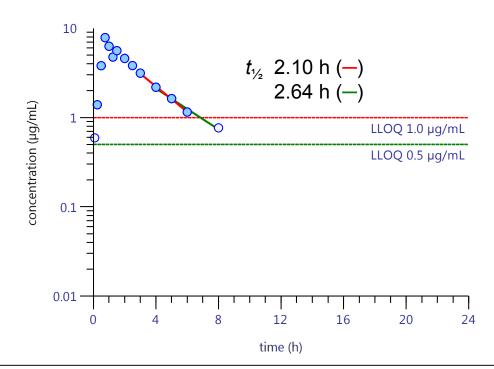
Clinical phase


- Extremely high concentrations of unencapsulated drug C observed in about 2% of samples
 - · However, 'normal' concentrations of the metabolite
 - Since the metabolite can only be formed from the unencapsulated drug, the analyte's high concentrations were considered an artifact
 - No documented improper sample handling (stabilization, temperature & time until centrifugation)


- Requirements for BA/BE studies
 - Bioanalytical method developed and validated for the intended use
 - Calibration range
 - LLOQ ≤5% C_{max} in any of the subjects
 - ULOQ ideally $\geq C_{max}$ in any of the subjects
 - (In)accuracy and (im)precision
 - 15% throughout the range (20% for ligand-binding assays)
 - 20% at the LLOQ (30% for ligand-binding assays)
 - Sampling long enough to obtain reliable estimates of
 - λ_z : at least three samples in the log/linear part
 - AUC_{0-t} : covering $\geq 80\%$ of $AUC_{0-\infty}$ in $\geq 80\%$ of observations
 - Both are *not required* if target metric is AUC_{0-72} (IR single dose) or $AUC_{0-\tau}$ (steady state)

- Drug D: $t_{\frac{1}{2}}$ 2 3 h (literature)
 - BE study (500 mg D component of a three-drug FDC)
 - liquid formulations, T vs. R
 - 27 subjects
 - TRR|RTR|RRT partial replicate design, washout seven days
 - Sampling until 24 hours post dose
 - LC/MS-MS, LLOQ 50 ng/mL
 - Drug D passed ABE with ease
 - t_{ν_2} 3.92 ± 0.88 h (T), 4.98 ± 1.24 h (R)
 - Extrapolated AUC (median, minimum maximum)
 T: 1.76% (0.87 3.61%), R: 2.42% (1.14 6.19%)
 - Sponsor developed a four-drug FDC
 - Data of the BE study should be used in a PopPK model to optimize the sampling schedule for a new study

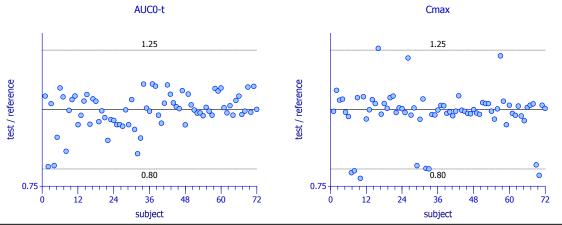
- Drug D: $t_{1/2} 2 3$ h (literature)
 - No individual λ_z or $t_{1/2}$ (as well as time ranges used in estimation) given in the report, only AUC_{0-t} and $AUC_{0-\infty}$
 - Reproduced the CRO's results by trial and error. Example:



- Drug D: $t_{\frac{1}{2}}$ 2 3 h (literature)
 - Obviously the time range for the estimation of λ_z was wrong
 - Two-compartment model!
 - What I obtained by NCA (—) and a PK model (—)

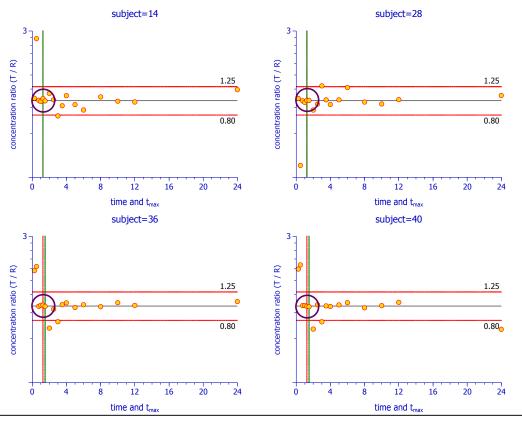
- Drug D: $t_{1/2} 2 3$ h (literature)
 - Why? No problems with correct estimation of λ_z
 - $t_{1/2}$ 4.63 ± 1.07 h (T), 5.59 ± 1.19 h (R)
 - Extrapolated AUC (median, minimum maximum)
 T: 2.08% (1.06 4.32%), R: 2.84% (1.47 6.19%)
 - Potential explanations
 - 'Push-the-button-pharmacokineticist' at work
 - Relied on an automatic algorithm?
 - No visual inspection of fits?
 - Anticipatory obedience?
 - The bioanalytical method was at least 10times more sensitive than ones used in the past (drug D approved in 1955)
 - Maybe the CRO wanted to avoid a single sentence in the discussion section of the report clarifying why a second phase is apparent – explaining longer half lives than the ones known from the literature

- Drug D: $t_{\frac{1}{2}}$ 2 3 h (literature)
 - Estimation of λ_z by bioanalytical methods with an LLOQ of 1.0 or 0.5 µg/mL explains short half lives given in the literature


- Drug D: $t_{\frac{1}{2}}$ 2 3 h (literature)
 - Lessons learned
 - The report should allow independent assessment
 - Good practice ^{1,2}
 - All raw data
 - $-\lambda_z$ and/or $t_{1/2}$ as well as time ranges used in estimation
 - All derived PK metrics
 - Desirable
 - Machine-readable data
 - Open formats (CSV, XML, CDISC, M\$ XLSX) preferred over proprietary ones (SAS XPT, M\$ XLS)
 - Unacceptable
 - A 500+ page PDF generated by SAS
 - As above but a scanned printout
- 1. Schulz H-U, Steinijans, VW. *Striving for standards in bioequivalence assessment: a review.* Int J Clin Pharm Ther Toxicol. 1991;29(8):293–8. PMID 1743802.
- 2. Sauter R, Steinijans VW, Diletti E, Böhm E, Schulz H-U. *Presentation of results from bioequivalence studies*. Int J Clin Pharm Ther Toxicol. 1992;30(Suppl.1):S7–30. PMID 1601535.

- Adaptive Two-Stage Sequential Design in BE
 - EMA (2010) It is acceptable to use a two-stage approach [...]. If this approach is adopted appropriate steps must be taken to preserve the overall type I error of the experiment [...]. For example, using 94.12% confidence intervals for both the analysis of stage 1 and the combined data from stage 1 and stage 2 would be acceptable, but there are many acceptable alternatives and the choice of how much alpha to spend at the interim analysis is at the company's discretion.
 - The 94.12% CI (α 0.0294) preserves the patient's risk in simulation-based methods if and only if
 - GMR 0.95 and
 - target power 80%

- Drug E: Adaptive Two-Stage Sequential Design
 - − GMR 0.90 (\neq 0.95), target power 85% (\neq 80%), α 0.0294
 - Stage 1: n₁ 24
 - Failed: PE 89.00% (94.12% CI: 77.24 102.54%)
 - Stage 2 with 54 subjects initiated
 - Pooled data: $n_1 + n_2 78$
 - Passed: PE 91.00% (94.12% CI: 82.16 100.79%)
 - Inflated type I error (patient's risk 5.23%)
 - The study's conditions would require more adjustment (α 0.0279 = 94.42% CI)
 - Post hoc assessment based on the study's CV
 - Passed: PE 91.00% (94.42% CI: 82.05 100.92%)
 - Type I error 4.99%
 - Wider CI but conclusion agrees with the original analysis


- Drug E: Adaptive Two-Stage Sequential Design
 - However, correct would have been to find a suitable α (0.0278) for GMR 0.90 and target power 85% already *before*, pre-specify it in the protocol, and evaluate the study with the adjusted 100(1 2α) = 94.44% CI
 - Stage 1: n₁ 24
 - Failed: PE 89.00% (94.44% CI: 77.09 102.75%)
 - Stage 2 with 54 subjects initiated
 - Pooled data: n_1+n_2 78
 - Passed: PE 91.00% (94.44% CI: 82.05 100.93%)
 - Type I error controlled (patient's risk 4.99%)

- Drug F: Documented high variability (literature, EPARs)
 - Generally a replicate design study is required $(CV_{wR} \text{ of } C_{max} \sim 40 50\%, CV_{wR} \text{ of } AUC 30 40\%)$
 - 2×2×2 crossover in 72 subjects, intra-subject CVs:
 - *C_{max}* 6.46%
 - *AUC*_{0-t} 4.87%
 - NCA and BE recalculated by ANAMED in Phoenix/WinNonlin 6.4 and myself in PHX/WNL 8.1: 'Results' confirmed

No obvious trend like in the 2012 GVK/Hyderabad-case!

- Drug F: Documented high variability (literature, EPARs)
 - Most dubious cases

 t_{max} of drug F reported in the literature with 1–2 h.

$$---t_{max}(R)$$
 $---t_{max}(T)$

Suspicion Were bioanalytics unblinded and in the area of the expected t_{max} the "R-samples" extracted – or even just injected – twice instead of the "T-samples"?

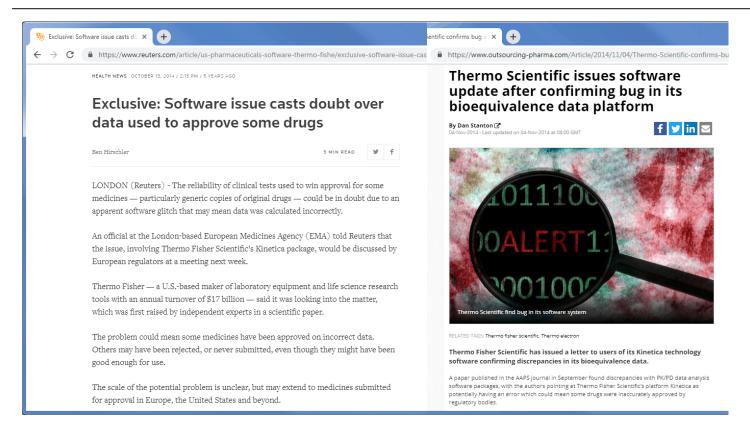
No smoking gun found in inspection (2019).

- Sample size estimation
 - EMA NfG (2001)
 - The number of subjects [...] is determined by
 - the error variance associated with the primary characteristic to be studied as estimated from a pilot experiment, from previous studies or from published data,
 - the significance level desired,
 - the expected deviation from the reference product compatible with bioequivalence (Δ) and
 - the required power.
 - EMA IR GL (2010)
 - The number of subjects to be included in the study should be based on an appropriate sample size calculation

- MSE, CV

- p of type I error (α)
- T/R-ratio
- p of type II error (β); power = 1 - β

- Sample size estimation not calculation
 - The variability is an estimate (previous studies, literature) or an assumption, the T/R-ratio an assumption, the power based on a desire (driven by the applicant's budget; although extremely highly powered studies should be rejected by the IEC)
 - The patient's risk (generally 5%) and acceptance limits (generally 80.00 – 125.00%) are fixed by the authority
- The myth of post hoc (aka a posteriori) power
 - The outcome of a comparative BA study is dichotomous
 - Either the study demonstrated BE or not
 - Calculation of post hoc power is futile
 - A high value does not further support BE; it only shows that expected values were not <u>exactly</u> realized in the study
 - A low value does not invalidate the conclusion since the patient's risk is not affected (α is independent from β)


- 2×2×2 crossover, 71 eligible subjects
 - From the study report (SAS, code not given)
 - *CV*_w 23.08%
 - Failed on C_{max} PE 119.84% (90% CI: 112.44 127.73%)
 - Power 100.0%
 - If power (probability to pass BE!) really is 100%, why did the study fail?
 - Power can be estimated with the R package PowerTOST ³
 library(PowerTOST)
 round(100*power.TOST(alpha=0.05, CV=0.2308, theta0=1.1984, n=71), 1)
 gives
 [1] 29.0
- Power is not of a regulatory concern but demonstrates a lack of statistical knowledge

^{3.} Labes D, Schütz H, Lang B. PowerTOST: Power and Sample Size Based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. 2018; R package version 1.4-7.

Software

- Validation mandatory
 - Common life cycle model should be followed
 - Installation Qualification Vendor (+ User)
 - Operational Qualification User (+ Vendor)
 - Performance Qualification User
 - White-box validation of commercial software *impossible* (source code not accessible)
 - Only black-box validation possible
 - Cross-validation with results of reference data sets obtained by other software
 - White-box validation of open-source software possible (by definition)
 - Possible ≠ easy; requires an expert coder
 - However, black-box validation possible as well

Software

- 4. Schütz H, Labes D, Fuglsang A. Reference Datasets for 2-Treatment, 2-Sequence, 2-Period Bioequivalence Studies. AAPS J. 2014;16(6):1292–97. doi:10.1208/s12248-014-9661-0.
- 5. Moralez-Acelay S, de la Torre de Alvarado JM, García-Arieta A. *On the Incorrect Statistical Calculations of the Kinetica Software Package in Imbalanced Designs*. AAPS J. 2015;17(4):1033–4. doi:10.1208/s12248-015-9749-1.
- 6. Fuglsang A, Schütz H, Labes D. 2015. *Reference Datasets for Bioequivalence Trials in a Two-Group Parallel Design.* AAPS J. 2015;17(2):400–4. doi:10.1208/s12248-014-9704-6.

Software

 Reference data-sets in the public domain which allow users to PQ their software installations

design	sequences/ groups	vari- ances	R	SAS	Phoenix/ WinNonlin	JMP	Sтата	OO Calc	SPSS	Kine- tica	Equiv- Test	Thoth- Pro	Statis- tica
2×2×2 Xover ^{4,5}	balanced	identical				\square	abla		NT		V	✓a	NT
	imbalanced		$ \overline{\mathbf{Z}} $		abla				NT	\boxtimes		\boxtimes	NT
2 groups parallel ⁶	equal	equal					Ø		NT	Ø	Ø	_	NT
		unequal	$ \overline{\mathbf{Z}} $		abla				NT	_	_	_	NT
	unequal	equal							NT	\boxtimes	_	_	NT
		unequal			✓b				NT	_	_	_	NT
replicate, scaling ⁷	balanced, imbalanced, incomplete	equal, unequal	Ø	Ø	Ø	Ø	Ø	NT	Ø	_	_	_	Ø

[✓] passed

(*i.e.*, design cannot be evaluated)

NT Not tested (yet)

Not lested (yet)Not implemented

a. Limited to 100 subjects

b. Limited to 1,000 subjects / group

^{7.} Schütz H, Tomashevskiy M, Labes D, Shitova A, González-de la Parra M, Fuglsang A. Reference Datasets for Studies in a Replicate Design intended for Average Bioequivalence with Expanding Limits. Manuscript in preparation 2019.

^{8.} Schütz H, Tomashevskiy M, Labes D. *replicateBE: Average Bioequivalence with Expanding Limits (ABEL)*. 2019; R package version 1.0.8. https://cran.r-project.org/package=replicateBE.