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Statistical AssumptionsStatistical Assumptions
�Generally accepted methods (e.g., ANOVA) 
rely on the Normal Distribution

�PK metrics (AUC, Cmax) of test and reference 
products follow IDD (Independent Identically 
Distribution)

�Common sample sizes in BE studies are too 
small to check this assumption

�Example:
Drug XYZ, 20 mg single dose, 405 subjects;
AUC∞: mean 45.3 ± 18.4 (CV 40.7%)



110 • 162

Taking a Taking a BiostatisticalBiostatistical Approach to Designing a BApproach to Designing a B ioequivalenceioequivalence Study: Ensuring Success through Effective PlanningStudy: Ensuring Success through Effective Planning (3/3)(3/3)

BioequivalenceBioequivalence & & BioavailabilityBioavailability Studies  Studies  | Munich, 2| Munich, 2 55 October 2010October 2010

Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (405 subjects)
mean 45.3 ± 18.4 (CV 40.7%)

-20 0 20 40 60 80 100 120

AUC∞∞∞∞ [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (405 subjects)

min 15.3, Q1 32.7, median 40.7, Q3 55.3, max 134.8  

0 20 40 60 80 100 120

AUC∞∞∞∞ [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (405 subjects)

geometric mean 42.0 ± 16.6 (CV 39.4%)

0 20 40 60 80 100 120

AUC∞∞∞∞ [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (405 subjects)

geometric mean 42.0 ± 16.6 (CV 39.4%)

2.32 2.82 3.32 3.82 4.32 4.82 5.32

ln (AUC∞∞∞∞) [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (405 subjects)

min 2.73, Q1 3.49, median 3.71, Q3 4.01, max 4.90  

2.32 2.86 3.39 3.93 4.46 5.00

ln (AUC∞∞∞∞) [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
20 mg XYZ s.d. (24 subjects)

AUC∞ [ng×h/mL] ln(AUC∞) [ng×h/mL]
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Statistical AssumptionsStatistical Assumptions
�BE testing started in the early 1980s with an 
acceptance range of 80% – 120% of the 
reference based on the normal distribution.

�Was questioned in mid 1980s
�Like many biological variables AUC and Cmax do not

follow a normal distribution
� Negative values are impossible
� The distribution is skewed to the right
� Might follow a lognormal distribution

�Serial dilutions in bioanalytics lead to multiplicative 
errors
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Statistical AssumptionsStatistical Assumptions
�‘Problems’ with logtransformation

�If we transform the ‘old’ acceptance limits of
80% – 120%, we get -0.2231, +0.1823.

�These limits are not symetrical around 100% any 
more, the maximum power is obtained at

e0.1823–0.2231 = 96%…

�Solution:
lower limit = 1 – 0.20, upper limit = 1/lower limit

ln(0.80) = –0.2231 and ln(1.25) = +0.2231.
Symetrical around 0 in the log-domain and around 
100% in the backtransformed domain (e0=100%).
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Statistical AssumptionsStatistical Assumptions
�‘Problems’ with logtransformation

�Discussion, whether more bioinequivalent formula-
tions will pass due to ‘5% wider’ limits
lower limit = 1 – 0.20, upper limit = 1/lower

80.00% – 125.00% (width 45.00%)
instead of keeping the ‘old’ width
lower limit = 1 – 0.1802, upper limit = 1/lower

81.98% – 121.98% (width 40.00%)
or even become more strict by setting
upper limit = 1 + 0.20, lower limit = 1/upper

83.33% – 120.00% (width 36.67%)
80% – 125% was chosen for convenience (!)
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BEBE--StatisticsStatistics

�Based on a given design (pilot study ↔
pivotal, healthy subjects ↔ patients, single 
dose ↔ multiple dose, parallel groups ↔
cross-over ↔ replicate)
�estimate the lowest feasible sample size to meet 

the aimed target:
� In a pilot study the CV and test/reference-ratio for further 

product development or planing a pivotal study;
� In a pivotal study to meet regulatory requirements 

(maintaing patient’s risk) in demonstrating BE.

�Write an SAP and evaluate the study.
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Power Power vs.vs. Sample SizeSample Size
�It is not possible to directly calculate the 
needed sample size.

�Power is calculated instead, and the lowest 
sample size which fulfills the minimum target 
power is used.
�Example: α 0.05, target power 80%

(β=0.2), T/R 0.95, CVintra 20% →
minimum sample size 19 (power 81%),
rounded up to the next even number in
a 2×2 study (power 83%).

n power
16 73.54%
17 76.51%
18 79.12%
19 81.43%
20 83.47%
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Power CurvesPower Curves
Power to show

BE with 12 – 36 
subjects for
CVintra 20%

n 24 → 16:
power 0.896→ 0.735

µT/µR 1.05 → 1.10:
power 0.903→ 0.700

2×2 Cross-over
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P
ow

er
20% CV

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

16

24
36



122 • 162

Taking a Taking a BiostatisticalBiostatistical Approach to Designing a BApproach to Designing a B ioequivalenceioequivalence Study: Ensuring Success through Effective PlanningStudy: Ensuring Success through Effective Planning (3/3)(3/3)

BioequivalenceBioequivalence & & BioavailabilityBioavailability Studies  Studies  | Munich, 2| Munich, 2 55 October 2010October 2010

Pilot StudiesPilot Studies
�Estimated CV has a high degree of uncer-
tainty (in the pivotal study it is more likely that 
you will be able to reproduce the PE, than the 
CV)
�The smaller the size of the pilot,

the more uncertain the outcome.

�The more formulations you have
tested, lesser degrees of freedom
will result in worse estimates.

�Remember: CV is an estimate –
not carved in stone!
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Pilot Studies: Pilot Studies: Sample SizeSample Size

�Small pilot studies (sample size <12)
�Are useful in checking the sampling schedule and
�the appropriateness of the analytical method, but
�are not suitable for the purpose of sample size 

planning!
�Sample sizes (T/R 0.95,

power ≥80%) based on
a n=10 pilot study

ratioCV

86

68

52

36

24

uncertain

1.3036640

1.3085235

1.3004030

1.2862825

1.2002020

uncert./fixedfixed
CV%

If pilot n=24:
n=72, ratio 1.091

require(require(require(require(PowerTOSTPowerTOSTPowerTOSTPowerTOST))))
expsampleNexpsampleNexpsampleNexpsampleN.TOST(alpha = 0.05,.TOST(alpha = 0.05,.TOST(alpha = 0.05,.TOST(alpha = 0.05,
targetpowertargetpowertargetpowertargetpower = 0.80, theta1 = 0.80,= 0.80, theta1 = 0.80,= 0.80, theta1 = 0.80,= 0.80, theta1 = 0.80,
theta2 = 1.25, diff = 0.95,theta2 = 1.25, diff = 0.95,theta2 = 1.25, diff = 0.95,theta2 = 1.25, diff = 0.95,
CV = 0.40, CV = 0.40, CV = 0.40, CV = 0.40, dfCVdfCVdfCVdfCV = 22, alpha2 = 0.05,= 22, alpha2 = 0.05,= 22, alpha2 = 0.05,= 22, alpha2 = 0.05,
design = "2x2")design = "2x2")design = "2x2")design = "2x2")
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Pilot Studies: Pilot Studies: Sample SizeSample Size

�Moderate sized pilot studies (sample size 
~12–24) lead to more consistent results
(both CV and PE).
�If you stated a procedure in your protocol, even

BE may be claimed in the pilot study, and no
further study will be necessary (US-FDA).

�If you have some previous hints of high intra-
subject variability (>30%), a pilot study size of
at least 24 subjects is reasonable.

�A Sequential Design may also avoid an 
unnecessarily large pivotal study.
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Pilot Studies: Pilot Studies: Sample SizeSample Size

�Do not use the pilot study’s CV, but calculate 
an upper confidence interval!
�Gould (1995) recommends a 75% CI (i.e., a 

producer’s risk of 25%).

�Apply Bayesian Methods (Julious and Owen 2006, 
Julious 2010).

�Unless you are under time pressure, a Two-Stage 
Sequential Design will help in dealing with the 
uncertain estimate from the pilot study.
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Sequential DesignsSequential Designs
�… have a long and accepted tradition in later 
phases of clinical research (mainly Phase III).
�Based on work by Armitage et al. (1969), 

McPherson (1974), Pocock (1977), O’Brien and 
Fleming (1979) and others.
�First proposal by LA Gould (1995) in the area of

BE did not get regulatory acceptance in Europe, but
�stated in the current Canadian Draft Guidance 

(November 2009).
�Two-Stage Design acceptable in the EU (BE GL 

2010, Section 4.1.8)
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Sequential DesignsSequential Designs
�Penalty for the interim analysis (94.12% vs. 90% CI)

�Moderate increase in sample sizes
�Example: T/R 95%,

power 80%

�~10% increase
(sim’s by Gould 1995)

�Comparison to a
fixed sample design
is based on a delusion – assuming a ‘known’ CV!

�On the long run (many studies) sequential designs 
will need less subjects.

48

34

24

14

8

94.12% CI

1.2004030

1.2142825

1.2002020

1.1671215

1.000810

ratio90% CICV%
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TwoTwo --Stage DesignStage Design
�EMA GL on BE (2010)

�Section 4.1.8
� Initial group of subjects treated and data analysed.
� If BE not been demonstrated an additional group

can be recruited and the results from both groups 
combined in a final analysis.

�Appropriate steps to preserve the overall type I error 
(patient’s risk).

�Stopping criteria should be defined a priori.
�First stage data should be treated as an interim 

analysis.

‘Internal Pilot 
Study Design’
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TwoTwo --Stage DesignStage Design
�EMA GL on BE (2010)

�Section 4.1.8 (cont’d)
�Both analyses conducted at adjusted significance 

levels (with the confidence intervals accordingly 
using an adjusted coverage probability which will
be higher than 90%). […] 94.12% confidence 
intervals for both the analysis of stage 1 and the 
combined data from stage 1 and stage 2 would be 
acceptable, but there are many acceptable alter-
natives and the choice of how much alpha to spend 
at the interim analysis is at the company’s discretion.
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TwoTwo --Stage DesignStage Design
�EMA GL on BE (2010)

�Section 4.1.8 (cont’d)
�Plan to use a two-stage approach must be pre-

specified in the protocol along with the adjusted 
significance levels to be used for each of the 
analyses.

�When analysing the combined data from the two 
stages, a term for stage should be included in the 
ANOVA model.
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TwoTwo --Stage DesignStage Design
�Method by Potvin et al. (2007) promising

�Supported by ‘The Product Quality Research 
Institute’ (members: FDA-CDER, Health 
Canada, USP, AAPS, PhRMA,…)
�Likely to be implemented by US-FDA
�Should be acceptable as a Two-Stage Design in 

the EU
�Two of BEBAC’s protocols approved by BfArM

and competent EC in May and December 2009
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PotvinPotvin et al.et al. (2007)(2007)
Method ‘C’ Evaluate power at Stage 1 

using α-level of 0.050

If power ≥80%, evaluate BE at 
Stage 1 (α = 0.050) and stop

Pass or fail

If power <80%, evaluate
BE at Stage 1 (α = 0.0294)

IF BE met, 
stop

Pass

If BE not met, calculate sample
size based on Stage 1 and α =
0.0294, continue to Stage 2

Evaluate BE at Stage 2 using
data from both Stages
(α = 0.0294) and stop

Pass or fail

Evaluate power at Stage 1 
using α-level of 0.050

If power ≥80%, evaluate BE at 
Stage 1 (α = 0.050) and stop

Pass or fail

If power <80%, evaluate
BE at Stage 1 (α = 0.0294)

IF BE met, 
stop

Pass

If BE not met, calculate sample
size based on Stage 1 and α =
0.0294, continue to Stage 2

Evaluate BE at Stage 2 using
data from both Stages
(α = 0.0294) and stop

Pass or fail
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PotvinPotvin et al.et al. (2007)(2007)
�Technical Aspects

�Only one Interim Analysis (after Stage 1)
� If possible, use software (too wide step sizes in Diletti’s

tables)
�Should be called ‘Interim Power Analysis’; not

‘Bioequivalence Assessment’ in the protocol
�No a-posteriori Power – only a validated method in the 

decision tree
�No adjustment for the PE observed in Stage 1
�No stop criterion for Stage 2! Must be clearly stated in 

the protocol (may be unfamiliar to the IEC, because 
standard in Phase III).
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PotvinPotvin et al.et al. (2007)(2007)
�Technical Aspects (cont’d)

�Adjusted α of 0.0294 (Pocock 1977)
�If power is <80% in Stage 1 and in the pooled 

analysis (data from Stages 1 + 2), α 0.0294 is 
used (i.e., the 1–2×α=94.12% CI is calculated)

�Overall patient’s risk is ≤0.0500
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PotvinPotvin et al.et al. (2007)(2007)
�Technical Aspects (cont’d)

�If the study is stopped after Stage 1,
the (conventional) statistical model is:
fixed: treatment+period+sequence
random: subject(sequence)

�If the study continues to Stage 2,
the model for the combined analysis is:
fixed: treatment+period+sequence+stage×treatment 
random: subject(sequence×stage)

�No poolability criterion; combining is always 
allowed – even for significant differences 
between Stages.
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PotvinPotvin et al.et al. (2007)(2007)
�Advantage

�Currently the only validated procedure for BE!

�Drawbacks
�Not validated for a correction of effect size (PE) 

observed in Stage 1 (must continue with the 
one used in sample size planning).

�No stop criterion (EMA GL on BE?)

�Not validated for any other design than the 
conventional 2×2 crossover (no higher order 
cross-overs, no replicate designs).
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DesignsDesigns
�The more ‘sophisticated’ a design is, the more 
information (in terms of variances) we may 
obtain.

�Hierarchy of designs:

Full replicate (TRTR | RTRT) �

Partial replicate (TRR | RTR | RRT) �

Standard 2×2 cross-over (RT | TR) �

Parallel (R | T)

P
ow

er
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DesignsDesigns
�Parallel Groups (patients, long half-life drugs)

�Cross-over (generally healthy subjects)
�Standard 2×2×2

�Higher Order Designs (more than two formulations)
�Latin Squares
�Variance Balanced Designs (Williams’ Designs)
� Incomplete Block Designs

�Replicate designs

P
ow

er
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Parallel GroupsParallel Groups
�Two-Group Parallel Design

Subjects

R
A

N
D

O
M

IZ
A

T
IO

N

Group 1

Group 2

Reference

Test
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CrossCross --over Designsover Designs
�Standard 2×2×2 Design

Subjects

R
A

N
D

O
M

IZ
A

T
IO

N

Sequence 1

Sequence 2

Period

I II

Reference

Test W
A

S
H

O
U

T Test

Reference
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CrossCross --over Designsover Designs
�3×3×3 Latin Square Design

Subjects

R
A

N
D

O
M

IZ
A

T
IO

N

Sequence 1

Sequence 2

Period

I II

Ref.

Test 1

W
A

S
H

O
U

T
 1

Test 1

Test 2

Sequence 3 Test 2 Ref. W
A

S
H

O
U

T
 2

Test 2

Ref.

Test 1

III
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CrossCross --over Designsover Designs
�Williams’ Design for three treatments

T2T1R6

T1RT25

RT2T14

RT1T23

T2RT12

T1T2R1

IIIIII

Period
Sequence
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BEBE AssessmentAssessment
�The width of the confidence interval depends 
on the variability observed in the study.

�The location of the confidence interval 
depends on the observed test/reference-ratio.

�Decision rules:
�Confidence Interval (CI) entirely outside the 

Acceptance Range (AR): Bioinequivalence proven.
�CI overlaps the AR, but is not entirely within the AR: 

Bioequivalence not proven.
�CI entirely within the AR: Bioequivalence proven.
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BEBE AssessmentAssessment
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Algebra…Algebra…
�Calculation of 90% CI (2-way cross-over)

�Sample size (N) 24, Point  Estimate (PE) 102.30%, 
Residual Mean Squares Error (MSE) from ANOVA 
(ln-transformed values) 0.04798, t-value (2α, N-2
degrees of freedom) 1.717
� Standard Error (SE∆) of the mean difference

� Confidence Interval 

2 2 0.04798
= 0.063232

24

MSE
SE

N∆
⋅ ×= =

2 ,

2 ,

ln 0.02274 1.717 0.063232 0.02274 1.717 0.063232

ln 0.02274 1.717 0.063232 0.02274 1.717 0.063232

0.9178

1.1403

df

df

PE t SE

L

PE t SE

H

CL e e e

CL e e e

α

α

∆

∆

− ⋅ − × − ×

+ ⋅ + × + ×

= = = =

= = = =
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HVDsHVDs//HVDPsHVDPs

Totfalushi et al. (2009), Fig. 3
Simulated (n=10000) three-period replicate design studies (TRT-RTR) in 36 subjects;
GMR restriction 0.80–1.25. (a) CV=35%, (b) CV=45%, (c) CV=55%.
ABE: Conventional Average Bioequivalence, SABE: Scaled Average Bioequivalence,
0.76: EU criterion, 0.89: FDA criterion.
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HVDsHVDs//HVDPsHVDPs
�EU GL on BE (2010)

�Average Bioequivalence (ABE) with Expanding 
Limits (ABEL)

� If you have σWR (the intra-subject standard deviation 
of the reference formulation) go to the next step;
if not, calculate it from CVWR

� Calculate the scaled acceptance range based on the 
regulatory constant k (θs=0.760)

[ ], WRkU L e σ± ⋅=

2ln( 1)WR WRCVσ = +
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HVDsHVDs//HVDPsHVDPs
�EU GL on BE (2010)

�Scaling allowed for Cmax only (not AUC!) – based on 
CVWR >30% in the actual study (no reference to 
previous studies).

�Limited to a maximum of CVWR 50% (i.e., higher 
CVs are treated as if CV = 50%).

�GMR restricted within 80.00% – 125.00% in any 
case.

�At higher CVs only the GMR is of importance!
�No commercial software for sample size estimation 

can handle the GMR restriction.
�Expect a solution from the community soon…
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HVDsHVDs//HVDPsHVDPs
�EU GL on BE (2010)

CV% L% U%
30 80.00 125.00
32 78.87 126.79
34 77.77 128.58
36 76.69 130.39
38 75.64 132.20
40 74.61 134.02
42 73.61 135.85
44 72.63 137.68
46 71.68 139.52
48 70.74 141.36
50 69.83 143.20
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HVDsHVDs//HVDPsHVDPs
�Replicate designs

�4-period replicate designs:
sample size = ½ of 2×2 study’s sample size

�3-period replicate designs:
sample size = ¾ of 2×2 study’s sample size

�Reminder: number of treatments (and biosamples) 
identical to the conventional 2×2 cross-over.

�Allow for a safety margin – expect a higher number 
of drop-outs due to the additional period(s).

�Consider increased blood loss (ethics!)
Eventually bioanalytics has to be improved.
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Example ABELExample ABEL
�RTR–TRT Replicate Design, n=18

Subj Seq Per Trt Cmax Subj Seq Per Trt Cmax Subj Seq Per Trt Cmax
1 1 1 R 209.91 7 1 1 R 58.49 13 2 1 T 92.76
1 1 2 T 111.05 7 1 2 T 62.80 13 2 2 R 59.54
1 1 3 R 116.36 7 1 3 R 123.23 13 2 3 T 56.84
2 1 1 R 101.16 8 1 1 R 105.34 14 2 1 T 159.20

2 1 2 T 100.31 8 1 2 T 103.32 14 2 2 R 155.50
2 1 3 R 31.71 8 1 3 R 43.67 14 2 3 T 165.31
3 1 1 R 14.83 9 1 1 R 59.73 15 2 1 T 162.41
3 1 2 T 57.10 9 1 2 T 169.03 15 2 2 R 47.31
3 1 3 R 21.47 9 1 3 R 48.26 15 2 3 T 88.23
4 1 1 R 118.71 10 1 1 R 38.34 16 2 1 T 19.44
4 1 2 T 37.34 10 1 2 T 31.19 16 2 2 R 42.80
4 1 3 R 52.29 10 1 3 R 19.43 16 2 3 T 18.93
5 1 1 R 36.11 11 2 1 T 51.95 17 2 1 T 90.58
5 1 2 T 83.95 11 2 2 R 195.71 17 2 2 R 42.39
5 1 3 R 17.76 11 2 3 T 65.87 17 2 3 T 54.57
6 1 1 R 146.44 12 2 1 T 18.72 18 2 1 T 42.96
6 1 2 T 40.45 12 2 2 R 20.63 18 2 2 R 171.86
6 1 3 R 38.34 12 2 3 T 7.45 18 2 3 T 59.15
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Example ABELExample ABEL

� σWR (WinNonlin)

Calculate the scaled acceptance range based on the 
regulatory constant k (0.760) and the limiting CVWR:

[ ], WRkU L e σ± ⋅= 2

1WR
WRCV eσ= −

σ WR 0.4628

CV WR 0.4887
L 0.7035
U 1.4215

30%<CVWR<50%: Use calculated limits.
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Example ABELExample ABEL

�ABE
PE: 99.89
90% CI:
72.04, 138.52
fails ABE
fails 75 – 133
30<CVWR<50
[L,U]
70.35, 142.15
passes ABEL
(90% CI within [L,U], PE within 80.00 – 125.00)
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Open Open IssuesIssues
�Studies in both fed and fasted states

�Acceptable to conduct either two separate two-way 
cross-over studies or a four-way cross-over study.

�Recommendation: Separate studies, because 
variability in fed and fasted state may be different 
and the treatment effect ist statistically confounded 
with the food effect.

�Limited sampling (truncated AUC72)
�May lead to ‘apple-and-orange’ statistics if in a 

particular subject the last sample is missing or 
<LLOQ for one of the treatments.
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Open Open IssuesIssues
�Limited sampling (truncated AUC72) cont’d

�Recommendations
� Truncate the AUC at the last time point where a 

value >LLOQ is measured for both treatments, or
� estimate C72 from log/linear reagression of previous 

samples.
� Regulatory acceptance unclear!

�Higher order cross-over studies (e.g., one test 
vs. two references or Tfed-Rfed-Tfasted-Rfasted)
�The analysis for each comparison should be con-

ducted excluding the data from the treatments that 
are not relevant for the comparison in question.
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Open Open IssuesIssues
�Higher order cross-over studies cont’d

�Minutes of the 3rd EGA Symposium on BE: 
“Training on the new Revised EMA GL on the
Investigation of BE”, 1 June 2010, London 

� However, the treatment, groups, sequences and 
periods should have their original values maintained 
in the analysis, and not have the values modified. For 
example an observation made in period 3 should still 
be coded as period 3, not have the period changed to 
“2” because the results for that subject in one of the 
earlier periods has now be removed.

� So what?
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Open Open IssuesIssues
�Fixed and random effects, ANOVA…

�Standard cross-over model
fixed: treatment+period+sequence
random: subject(sequence)

�BE GL (Section 4.1.8, Statistical analysis)
� The terms to be used in the ANOVA model are 

usually sequence, subject within sequence, period 
and formulation. Fixed effects, rather than random 
effects, should be used for all terms.
fixed: treatment+period+sequence+subject(sequence)

� Contrary to all (!) textbooks on cross-over designs
in bioequivalence…
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Open Open IssuesIssues
�Fixed and random effects, ANOVA… cont’d

�One objective of the new guidance was to 
completely standardise the method of analysis. 
While mixed models are generally useful, for
bioequivalence ANOVA is considered adequate. 
[…] A mixed linear models approach would not be
acceptable, and subjects with valid data for only 
one of the two treatments should be excluded. No
change. The phrase “or equivalent parametric 
method” removed to make clear that we are 
insisting on ANOVA.
EMA, Overview of Comments received on Draft Guideline on the Investigation of Bioequivalence
Doc. Ref. EMA/CHMP/EWP/26817/2010, London, 20 January 2010
http://www.ema.europa.eu/docs/en_GB/document_library/Other/2010/02/WC500073572.pdf



159 • 162

Taking a Taking a BiostatisticalBiostatistical Approach to Designing a BApproach to Designing a B ioequivalenceioequivalence Study: Ensuring Success through Effective PlanningStudy: Ensuring Success through Effective Planning (3/3)(3/3)

BioequivalenceBioequivalence & & BioavailabilityBioavailability Studies  Studies  | Munich, 2| Munich, 2 55 October 2010October 2010

Open Open IssuesIssues
�Fixed and random effects, ANOVA… cont’d

�Questions at EGA Meeting:
� According to statisticians of EGA member companies 

“subject” and “subject within sequence” should be 
considered as random effects – Which procedure 
should be used?

� For replicate design studies mixed effect modelling
seems to be necessary in order to get unbiased and 
separate results for intra-subject variability of test and 
reference.
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Open Open IssuesIssues
�Fixed and random effects, ANOVA… cont’d

�Answer:
� Fixed or random models can be used as long as they 

are pre-specified but fixed is the preferred approach 
mentioned in the revised guideline. Both approaches 
should be acceptable and it is unlikely the agency 
would refuse an application based on the choice of 
fixed or random. There will be further discussions on 
the statistical guidance on these models.

My recommendation: Use fixed effects only for 
balanced datasets (no drop-outs).



161 • 162

Taking a Taking a BiostatisticalBiostatistical Approach to Designing a BApproach to Designing a B ioequivalenceioequivalence Study: Ensuring Success through Effective PlanningStudy: Ensuring Success through Effective Planning (3/3)(3/3)

BioequivalenceBioequivalence & & BioavailabilityBioavailability Studies  Studies  | Munich, 2| Munich, 2 55 October 2010October 2010

Open Open IssuesIssues
�Fixed and random effects, ANOVA… cont’d

�Answer:
� There is an inherent risk if the applicant uses PROC 

mix and does not remove the missing data prior to 
evaluation as there will be a fitting of data and this 
will lead to a difference between PROC Mix and 
other SAS models. Medicines agencies will accept 
the use of PROC Mix or other PROC as long as the 
handling of missing data is pre-defined. Its use will 
not result in arbitration.

My recommendation: Use a mixed model for replicate 
design studies.
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Thank You!Thank You!

Part III: Models, Evaluation, Part III: Models, Evaluation, 
Open Open IssuesIssues

Open Questions?Open Questions?

Helmut Schütz
BEBAC

Consultancy Services for
Bioequivalence and Bioavailability Studies

1070 Vienna, Austria
helmut.schuetz@bebac.at


