
Pharmacokinetic Issues

A Basic Refresher



Pharmacokinetics

φαρµακός (drug) + κινητικός (putting in motion)
• Term introduced in 1953.

― Friedrich H Dost, Der Blutspiegel: Kinetik der Konzentrationsabläufe in 
der Kreislaufflüssigkeit (1953)

• Pharmacokinetics may be simply defined as what the body does to 
the drug, as opposed to
pharmacodynamics which may be defined as what the drug does to 
the body.
― Leslie Z Benet, Pharmacokinetics: Basic Principles and Its Use as a Tool 

in Drug Metabolism (1984)



Pharmacokinetic process

(L)ADME
• Liberation

― Release & dissolution
• Absorption

― Permeation (diffusion & transport)
• Distribution

― Peripheral compartment(s)
• Metabolisation

― Gut wall & first pass
• Excretion

― Urine, feces, sweat, air,…

Absorption

Elimination



Pharmacokinetic process
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Pharmacokinetic process

Release

Dissolution

Drug Dosage
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Pharmacokinetic process

Biopharmaceutical phase
Disingration
Release
Dissolution

Pharmacokinetic phase
Absorption

Passive diffusion
Active transport

Metabolism
Intestinal first pass
Membrane first pass
Hepatic first pass

Gut
Lumen

Gut Wall

Portal
Vein

Liver

Metabolism

PgP

Central Compartment

Feces



Pharmacokinetic process

Absorption revisited

Basolateral side

Transcellular
Paracellular

Carrier
mediated

Mw <~200 Da

Endocytosis of
large molecules

Metabolism
Efflux

Apical side

Majority of drugs



Pharmacokinetic models

The body is simplified to one – or more –
‘Compartments’ where the drug is distributed
• One compartment model

― Drug is distributed homogeneously within the entire body.
• Two compartment model

― The first (central) compartment is loosely related to the blood and heavily 
perfused organs: Liver, kidneys, lung, muscles, (brain).

― The second (peripheral) compartment describes less perfused tissues 
(fat, bones, …). 



Pharmacokinetic models

Compartment models
• Compartments are

― described by a volume and
― pathways which link them.

• These links may be
― unidirectional (absorption, excretion) or
― bidirectional (central ↔ peripheral)

• Most common models are ‘mammillary’, i.e.,
― absorption to the central compartment,
― distribution to peripherial and back to the central compartment, and
― elimination from the central compartment.



Pharmacokinetic models

Examples

One comp. IV One comp. EV Two comp’s EV

Vd

D

VdD
k01

k10

V1D V2

k10

k01
k12

k21



One compartment model, IV dose

Excursion into Hydrodynamics
• Driving force for draining an open tank:

Hydrostatic pressure (height of liquid column & gravity).
• Emptied volume decreases with time.
• Same proportion is emptied in the same time interval.

t  =  0
V = 1

t  =  1
V = ½

t  =  2
V = ¼



One compartment model, IV dose
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The whole body is simplified to one ‘compartment’
• Practically instantaneous distribution.
• Homogenous within all tissues.
• Concentrations decline exponentially.



One compartment model, IV dose
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Half life
• Troughout the profile concentration drops to ½ of its previous value 

within one ‘half life’ (t½).
• In a semilogarithmic plot the profile shows a straight line with

― a slope of –ln(2)/t½, which is the elimination rate constant ke and
― the intercept is related to the initial concentration by C0 = eintercept.



One compartment model, IV dose

Volume of distribution
• At administration the entire dose (D) is assumed to

homogenously dissolve in the ‘Volume of distribution’ (Vd).
• We can only measure concentrations.

― A

― Cave: Vd describes a hypothetical compartment, whereas
in reality the distribution might not be homogenous.
Some lipophilic drugs have a Vd of hundreds of liters…

― Classical PK is not directly related to physiology.
― Essentially, all models are wrong,

but some are useful. George Box

0At 0 we get .d
Ct V
D

= =



One compartment model, IV dose

Clearance
• Instead of describing elimination by the rate constant ke (unit: 1/time) 

we can also ask for the fraction of Vd which is completelly ‘cleared’ of 
the drug per unit of time.

• This parameter is called ‘Clearance’ CL (unit: volume/time), which 
leads to basic equations of pharmacokinetics:
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PK Modeling

Model building process
• Define the model.
• This leads to a set of differential equations.
• The integrated form of the equations is used

to fit the observed concentrations to the model.
• Once the model’s parameters are obtained, we can make predictions.
• We can introduce covariates which may influence concentrations 

(e.g., body weight, age, sex, HCT, …).
• We can try to link PK with pharmacodynamics – which regimen leads 

to an optimum effect?

V1 V2

k10

k12

k21

D



PK Modeling

Model building process
• Define the model

― Compartments
― Links between them

• This leads to a set of differential equations:

― Simple ones can be solved mathematically.
― More complicated ones by means of ‘Laplace Transformations’.
― Some can be only numerically integrated (software required).
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PK Modeling

Model building process
• The integrated form of the equations comes in two ‘flavors’

― Micro-constants (volumes of distribution, rate constants or clearances)
– One compartment IV bolus, parameterized in rate constant or clearance

― Macro- or hybrid-constants (sum of exponentials)
– Two compartments IV bolus
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PK Modeling

Model building process
• Micro vs. macro…

― The two parameterizations are equivalent, i.e., they have a strict mathema-
tical relationship – though the formulas relating them might be nasty
(e.g., two-comp. IV micro →macro)
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PK Modeling

Model building process
• The integrated form of equations is used to fit the

observed concentrations to the model
― Different methods exist.
― Most simple one:

Minimize the sum of least squares
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PK Modeling

Model building process
• Once the model’s parameters are obtained, we can make predictions:

― We can not only describe the time course of concentrations in plasma,
but also in ‘deeper’ compartments and urine.

― Derive suitable dosage regimens, e.g.,
– Deal with accumulation,
– Minimize fluctuations of concentrations in steady state,
– Keep minimum concentrations above a threshold, …

• We can assess whether patients’ metrics influence concentrations. 
Examples:
― Volume of distribution generall increases with body weight: C ↓
― Clearance may decrease with age: C ↑



Interludes

Rate of drug input
• Average concentrations

and the AUC are indepen-
dent from the input-rate.
Only maximum concen-
trations – and therefore,
fluctuations in steady
state – are affected.
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Interludes

Dost’s ‘Law of Corresponding Areas’ aka
‘Superposition Principle’
• In a linear PK system the

Area Under the Curve in
steady state within one
dosing interval (AUC0–τ )
equals AUC0–∞ after a
single dose.
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Interludes

Relevance of phases
• Generally the slowest phase is responsible for accumulation. 

Commonly ‘terminal half life’ is used synonymously with ‘biological 
half life’. However, sometimes the slow phase is not relevant.

• In any multi-compartment model (parameterized in macro-constants) 
the AUC is given as

where Xi are the coefficients and λi the exponents.
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Interludes

Relevance of phases
• In the example all parameters are identical, except A and B (A + B is 

kept constant).
• AUC0–∞ are identical.
• However, the slow

phases account for
71%, 91%, and 98%
of AUC0–∞.
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A:B = 4:1

A:B = 1:1

A:B = 1:4



Interludes

Mean of Residence Times
• Distribution and elimination are stochastic processes.

― Some molecules leave the circulation very quickly,
whereas others stay for a long time.

― Example
– We dose 2000 IU (activity 4.5 MIU/mg) of FVIII (265 kDa) which will be

eliminated with a half life of twelve hours. 1.67 nmol are ≈1015 (one quadrillion = 
1 000 000 000 000 000!) molecules. If we could ‘tag’ individual molecules, we 
would see the first ones already leaving the central circulation within
~2 minutes. However, most stay longer…

― If we register how long each molecule stays in the body (i.e., their 
‘residence times’) we could draw a histogram – like for any other 
distribution.



Interludes

Mean of Residence Times
― This histogram is actually the concentration-time curve.
― Distributions can be described by their so-called ‘statistical moments’.

– The ‘zero’ moment is given as

– The first as

– The second as

( )0 dS f x x= ∫

( )2
2 dS x f x x= ⋅∫

( )1 dS x f x x= ⋅∫



Interludes

Mean of Residence Times
– In pharmacokinetics S0 = AUC and S1 = AUMC,

the ‘Area Under the Moment Curve’.
– The ‘Mean of Residence Times’ is calculated as

– MRT = AUMC ⁄ AUC
(IV and EV administration)

– MRT = AUMC ⁄ AUC – ½t*
(infusion, where t* = length
of infusion)

– Rule of thumb: after MRT ~⅔ of
the drug have been eliminated.

– S2 is rarely used (leads to VRT,
the ‘Variance of Residence Times’).
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Two-Stage Procedure

In general we are not interested in describing the PK of
one particular patient, but at least the group of patients in a 
study.
• Stage 1

― Fit individual patients to a model.
― Derive a set of PK parameters.

• Stage 2
― From this set of PK parameters calculate

means and standard deviations.
― Optionally calculate a confidence interval which we can use

in predicting what to expect in the population of patients.



Two-Stage Procedure

Problems
• Which mean?

― Many biologic variables
do not follow a normal
distribution.

― Geometric mean:
Clearances, volumes.

― Harmonic mean:
Rate constants.

― Arithmetic mean:
Excreted amounts.

CNS-drug PO (n = 437)

Shapiro-Wilk p = 8.59e-13
CL/F [L/h]
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Two-Stage Procedure

Problems
• What if patients are best fit to different models?

― Patients may belong to dif-
ferent genotypes (e.g., ex-
tensive and poor metaboli-
zers).

― Due to limitations of the bio-
analytical method the ‘slow’
phase is not observed in
EMs.

― Best fits are a one-comp.
model for the EM and a two-
comp. model for the PM. 1
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Limit of Quantification

Extensive Metabolizer

Poor Metabolizer



Two-Stage Procedure

Problems
• What if patients are best fit to different models?

― Although eliminations are
identical (parallel lines in
the last phase) – we don’t
see it in the EM.

― The model of the PM has
five parameters (V1, V2, k10,
k12, k21), but the EM’s model
only two (V1, k10).

― It does not make sense to
calculate means – ‘apples
and oranges’… 1
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Limit of Quantification

Extensive Metabolizer

Poor Metabolizer



Population PK Modeling

Problems in the Two-Stage Procedure lead in the early 1970s
to ‘Population PK Modeling’
• Simultaneous fit of all patients’ data

― Separation of residual error into intra- and inter-individual components.
― Direct assessment of covariates (body weight, age, sex, HCT, …).

• PK of an ‘average patient’ is derived
― Taking variabilities into account we can predict the PK of the entire 

population of patients.
― Since covariates are already part of the model, we can predict the PK

of a particular patient based upon them.



Population PK Modeling
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Population PK Modeling

Basics
• Nonlinear Mixed Effects Model

― Mixed Effects Model: Fixed and Random Effects
• Estimates Population PK parameters (V, CL, …)

― Fixed Effects (thetas θ)
• Estimates Variability

― Random Effects (etas η)
– Intersubject Variability
– Interoccasion Variability (day to day)
– It is expected that etas are distributed N(0, ω²).



Population PK Modeling

Basics
• Estimates Variability (cont’d)

― Residual Error (epsilons ε)
– Intrasubject: Measurement error, model misspecification, …
– It is expected that epsilons are distributed N(0, σ²).

• Identify factors determining intersubject Variability: Covariates
― Demographics: Body weight / surface area, age, sex, …
― Genotypes: CYP450, …
― Physiology: Renal (creatinine clearance) or hepatic impairment, HCT, 

disease state, …
― Influence of concomitantly administered drugs (DDI)
― Others: Food, circadian variation, formulation, …



Population PK Modeling

Model
• yij = f(Θi) + εij, where 

― yij is the j th observation of the i th subject,
― f is a model that describes all observations,
― Θi is a vector of subject i ’s parameter values (θ), and
― εij is the residual error of subject i ’s j th observation.

• The elements of Θi are usually θi = θ · eη, where
― θ is the typical value for a parameter and
― ω² is the variance of η values.

Pyry Välitalo, University of Kuopio, 1.10.2009



Population PK Modeling

Components

Pyry Välitalo, University of Kuopio, 1.10.2009

Structural model
How many

compartments,
how to model
elimination?

Statistical model
How to model inter-
subject, between-

occasion vari-
ability?

Covariate model
E.g., weight effect

on Vd or
age effect on CL

Fixed 
effects

Random 
effects



Population PK Modeling

Advantages
• Studies in the target population
• Sparse sampling (only 2 – 3 samples / subject) possible

― Routine sampling in Phase II/III.
― Special populations (Pediatrics, cancer/AIDS, hemophilia, 

critical care patients, eldery, …).
• Unlike in ‘rich data sets’ missing data not problematic

― Imbalanced designs common
– Different doses / subject.
– Different number of samples / subject.
– Different sampling times / subject.



Population PK Modeling

Advantages
• Covariates part of the model

― Fewer restrictions on in-/exclusion criteria.
― ‘What if’ scenarios in planing further studies.
― Full model allows prediction of ‘real world PK’ – leads to more reliable 

dose regimen / posology.
― An established and fully validated PopPK model allows precise dosing of 

individual patients – leading to personalized medicine.



Population PK Modeling

Disadvantages
• Complex methodology

― Might require simulations (optimal sampling times for sparse sampling); 
stepwise refinement of model during study.

― Statistical models not trivial.
― Expensive software with steep learning curve.
― Carl Metzler: “PK Modeling – Art or Science?”

• Time consuming
― Easily ~10times longer than classical Two-Stage PK – even for an 

experienced modeler.



Population PK Modeling

Disadvantages
• Validation might require multiple studies

― Internal validation:
Use only a part of the study’s data to set up a model and
compare predictions with the other part.

― External validation:
Predictions vs. another study

• Cost/Benefit ratio
― Unclear beforehand whether the model will give more than a trivial result 

(like: concentrations depend on body weight).



Population PK Modeling

Example
• ADVATE, 19 patients, short infusion, rich data set, 2-comp model, 

covariates: age on V1, CL and body weight on V1, V2, CL; FOCE ELS
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Pharmacokinetic Issues

Thank You!
Open Questions?

Helmut Schütz
BEBAC

Consultancy Services for
Bioequivalence and Bioavailability Studies

1070 Vienna, Austria
helmut.schuetz@bebac.at
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